746. Min Cost Climbing Stairs
On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).
Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.
Example 1:
Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.
Example 2:
Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].
Note:
- cost will have a length in the range [2, 1000].
- Every cost[i] will be an integer in the range [0, 999].
解题思路
这是一道简单的动态规划问题。前n-2个节点到达top的消耗函数f(i) = cost[i] + min{f(i+1), f(i+2)}。从后往前即可推出0或者1出发所需的最小消耗。
代码如下:
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
if(n == 2) {
return min(cost[0], cost[1]);
}
int result = 0;
vector<int> actcost(n, 0);
actcost[n-1] = cost[n-1];
actcost[n-2] = cost[n-2];
for(int i = n - 3; i >= 0; i--) {
actcost[i] = cost[i] + min(actcost[i+1], actcost[i+2]);
}
result = min(actcost[0], actcost[1]);
return result;
}
};