LeetCode——746. Min Cost Climbing Stairs

746. Min Cost Climbing Stairs
On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

Example 1:
Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.

Example 2:
Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].
Note:

  • cost will have a length in the range [2, 1000].
  • Every cost[i] will be an integer in the range [0, 999].

解题思路
这是一道简单的动态规划问题。前n-2个节点到达top的消耗函数f(i) = cost[i] + min{f(i+1), f(i+2)}。从后往前即可推出0或者1出发所需的最小消耗。


代码如下:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        if(n == 2) {
            return min(cost[0], cost[1]);
        }
        int result = 0;
        vector<int> actcost(n, 0);
        actcost[n-1] = cost[n-1];
        actcost[n-2] = cost[n-2];
        for(int i = n - 3; i >= 0; i--) {
            actcost[i] = cost[i] + min(actcost[i+1], actcost[i+2]);
        }
        result = min(actcost[0], actcost[1]);
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值