ML
Hot_G
游手好闲,摸鱼学习
展开
-
[机器学习][基础算法]SVM
SVMSupport vector machine一般去理解一个算法,都是从名字入手,接触了这么几个算法,这是唯一一个让人捉摸不透的名字.https://onionesquereality.wordpress.com/2009/03/22/why-are-support-vectors-machines-called-so/amp/SVM:from the classifier to...原创 2020-04-30 23:23:26 · 283 阅读 · 0 评论 -
[机器学习][基础算法]条件随机场
概率图模型马尔科夫过程(马尔科夫链)定义:假设一个随机过程中,某刻的状态至于前一状态有关,即:P(xn∣x1,x2,...xn−1)=P(xn∣xn−1)P(xn∣x1,x2,...,xn−1)=P(xn∣xn−1)P(x_n|x_1,x_2,...x_{n-1})=P(x_n|x_{n-1})P(xn|x1,x2,...,xn−1)=P(xn|xn−1)P(xn∣x1,x2,.....原创 2020-04-29 00:11:25 · 247 阅读 · 0 评论 -
[机器学习][基础算法]EM算法
EM算法概念EM算法似然函数最大似然估计EM算法公式推导推导逼近证明收敛高斯混合分布理解概念EM算法最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估...原创 2020-04-26 23:13:40 · 213 阅读 · 0 评论 -
[机器学习][基础算法]贝叶斯
贝叶斯贝叶斯决策理论贝叶斯公式极大似然估计朴素贝叶斯分类器sklearn参数详解优点缺点:贝叶斯决策理论贝叶斯决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率都已知的理想情形下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。贝叶斯公式P(c∣x)=P(x,c)P(x)=P(c)P(x∣c)P(x)P(c|x) = \frac{P(x,c)}{P(x)}...原创 2020-04-23 23:19:21 · 216 阅读 · 0 评论 -
[机器学习][基础知识]线性回归
线性回归Task1统计学习是关于计算机基于数据构建概率统计模型并利用模型进行预测与分析的一门科学包括监督学习,无监督学习,强化学习,半监督学习,主动学习监督学习的应用分为:分类、标注、回归回归模型时表示从输入变量到输出变量之间映射的函数。一般分为:线性回归和非线性回归机器学习基础知识之线性回归一般形式理论为什么用均方误差?极大似然估计优化方法评价指标程序一般形式f(x)=...原创 2020-04-21 19:57:37 · 180 阅读 · 0 评论 -
[ML][分类指标]ROC, AUC介绍
常用分类指标简单示例主要参数ROC曲线绘制ROC曲线AUCAUC值的计算AUC的意义Reference简单示例转载自zhwhong简书医学检查结果一般有一下四种情况:真阳性(True Positive, TP)假阳性(False Positive, FP)真阴性(True Negative, TN)假阴性(False Positive, FP)主要参数准确率(Accura...原创 2020-03-27 19:29:46 · 983 阅读 · 0 评论