mathmatics
文章平均质量分 70
MemRay
PhD在读,intereted in NLP、Deep Learning及其他AI问题。这里基本是个收藏夹 :D
展开
-
牛顿开方法的算法及其原理
转载自:http://www.guokr.com/question/461510/其实牛顿开方法是牛顿迭代法在开平方上的应用,牛顿迭代法同时也能快速逼近很多方程的解,自然可以用来开任意平方。求,即求的正根。更一般地,求,即求的正根。注意牛顿迭代法只能逼近解,不能计算精确解。不过实际应用中,我们都不要求绝对精确的解,例如计算器得出结果也不需要给出无限位,只需要给出十几转载 2015-09-18 09:55:02 · 1537 阅读 · 0 评论 -
一起来算圆周率
转载自:http://www.guokr.com/blog/444081/自古计算圆周率是数学界一项流行运动,各大数学家争相破记录以名垂青史。想象有人为圆周率15年如一日地算,算的不是圆周率而是寂寞啊!自有圆周率,计算比的是数学;后有现代数学,计算比的是寂寞;自从有了计算机,计算变成程序员们(另一种)练手的健康活动:锻炼编程技术之余可比肩历史伟人,看官也来一发吧!不懂数学没关系,计转载 2015-09-18 05:01:29 · 6173 阅读 · 1 评论 -
数学常数e的含义
转载自:http://www.ruanyifeng.com/blog/2011/07/mathematical_constant_e.html作者: 阮一峰日期: 2011年7月 9日1.e是一个重要的常数,但是我一直不知道,它的真正含义是什么。它不像π。大家都知道,π代表了圆的周长与直径之比3.14159,可是如果我问你,e代表了什么。你能回答吗?转载 2015-09-14 07:44:26 · 2705 阅读 · 0 评论 -
数学悖论与三次数学危机
转载自:https://web.archive.org/web/20081121044750/http://www.oursci.org/magazine/200401/040105.htm “……古往今来,为数众多的悖论为逻辑思想的发展提供了食粮。” ――N・布尔巴基 什么是悖论?笼统地说,是指这样的推理过程:它看上去是合理的,但结果却得出了矛盾。悖论在很多情况下表现为转载 2015-09-12 10:11:57 · 3907 阅读 · 0 评论 -
某MIT计算机学生谈学数学
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。 为什么要深入数学的世界 作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要 想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅 程。我的导师最初希望我去做的题目,是对a转载 2015-09-12 09:30:21 · 1547 阅读 · 0 评论 -
和机器学习和计算机视觉相关的数学之一
和机器学习和计算机视觉相关的数学之一(以下转自一位MIT牛人的空间文章,写得很实际:)作者:Dahua感觉数学似乎总是不够的。这些日子为了解决research中的一些问题,又在图书馆捧起了数学的教科书。从大学到现在,课堂上学的和自学的数学其实不算少了,可是在研究的过程中总是发现需要补充新的数学知识。Learning和Vision都是很多种数学的交汇场。看着不同的理论体系的交转载 2014-11-19 20:00:30 · 753 阅读 · 0 评论 -
gnuplot 入门教程
gnuplot 入门教程 1转载 2014-09-30 16:56:34 · 922 阅读 · 0 评论 -
Poisson 分布
转载自:http://episte.math.ntu.edu.tw/articles/sm/sm_16_07_1/index.html这个来自台大的网站蛮多有意思的内容,要是能翻译成简体就更好了~写的很清楚,适合放在教科书上。曹亮吉 二項分布是離散型機率模型中最有名的一個,其次是 Poisson 分转载 2013-10-17 01:32:07 · 1700 阅读 · 0 评论 -
共轭检验
如果你读过贝叶斯学习方面的书或者论文,想必是知道共轭先验这个名词的。现在假设你闭上眼睛,你能准确地说出共轭分布是指哪个分布和哪个分布式共轭的吗?我之前就常常把这个关系弄错,现在记录如下,以加强印象。贝叶斯学派和频率学派的区别之一是特别重视先验信息对于inference的影响,而引入先验信息的手段有“贝叶斯原则“(即把先验信息当着均匀分布)等四大类其中有重要影响的一类是:共轭先验转载 2013-06-26 01:14:52 · 986 阅读 · 0 评论 -
(EM算法)The EM Algorithm
转载自:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。转载 2013-06-26 00:21:56 · 1064 阅读 · 0 评论 -
Jacobian矩阵和Hessian矩阵
1. Jacobian转载自:http://jacoxu.com/?p=146在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 还有, 在代数几何中, 代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群, 曲线可以嵌入其中. 它们全部都以数学家卡尔·雅可比(Carl Jacob, 1804年10月4日-1851年2月18日)命名;英文雅可比转载 2013-06-26 00:26:05 · 22329 阅读 · 1 评论 -
高斯混合模型
本文就高斯混合模型(GMM,Gaussian Mixture Model)参数如何确立这个问题,详细讲解期望最大化(EM,Expectation Maximization)算法的实施过程。单高斯分布模型GSM多维变量X服从高斯分布时,它的概率密度函数PDF为:x是维度为d的列向量,u是模型期望,Σ是模型方差。在实际应用中u通常用样本均值来代替,Σ通常用样本方差来代替。很容易转载 2013-06-25 15:53:15 · 1081 阅读 · 0 评论 -
先验概率、后验概率与似然估计
转载自:http://hi.baidu.com/hi9394/item/5953948a4a2365cab0715407先验概率、后验概率与似然估计本文假设大家都知道什么叫条件概率了(P(A|B)表示在B事件发生的情况下,A事件发生的概率)。先验概率和后验概率教科书上的解释总是太绕了。其实举个例子大家就明白这两个东西了。假设我们出门堵车的可能因素有两个(就是假设而已,别当真):转载 2013-06-25 15:12:54 · 1230 阅读 · 0 评论 -
从随机过程到马尔科夫链蒙特卡洛方法
转载自:http://f.dataguru.cn/article-9274-1.html1. Introduction第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning tutorial 里面讲解到的 RBM 用到了 Gibbs sampling,当时因为要赶着做项目,虽然一头雾水,但是也转载 2016-05-30 09:56:40 · 4887 阅读 · 0 评论