事实表和维度表

a)         事实表   

                        i.              事实表是维度模型的基本表,存放有大量的业务性能度量值。

                       ii.              事实表的一行对应一个度量值,一个度量值就是事实表的一行,事实表的所有度量值必须具有相同的粒度

                     iii.              事实表中最有用的事实是数字类型和可加形型事实

                     iv.              在维度模型中,事实表表示维度见多对多的关系

b)        维度表

                        i.              维度表包含业务的文字描述,维度表倾向于将列数做相当少。

                       ii.              位数表是进入事实表的入口,丰富的维度属性给出了丰富的分析切割能力,维度给用户提供了使用数据仓库的借口

c)         事实与维度的融合

                        i.              由数字类型度量值组成的事实表连接到一组填满描述属性的维度表上,这个星型结构特征通常叫做星星连接方案

                       ii.              维度模型的简明性也带来了性能上的好处,数据库优化器可以更加高效的出吃这些连接关系较少的简单方案。数据库引擎可采取非常强劲的做法是:首先集中对建立了充足的索引的维度进行约束处理,然后用满足条件的维度表关节子的笛卡尔乘积一次性处理全部的事实表。

                     iii.              维度模型的可预订框架能够经受住无法预见的用户行为带来的考验

       一个典型的例子是,把逻辑业务比作一个立方体,产品维、时间维、地点维分别作为不同的坐标轴,而坐标轴的交点就是一个具体的事实。也就是说事实表是多个维度表的一个交点。而维度表是分析事实的一个窗口。 

       首先介绍下数据库结构中的星型结构,该结构在位于结构中心的单个事实数据表中维护数据,其它维度数据存储在维度表中。每个维度表与事实数据表直接相关,且通常通过一个键联接到事实数据表中。星型架构是数据仓库比较流向的一种架构。

        事实表是数据仓库结构中的中央表,它包含联系事实与维度表的数字度量值和键。事实数据表包含描述业务(例如产品销售)内特定事件的数据。

        维度表是维度属性的集合。是分析问题的一个窗口。是人们观察数据的特定角度,是考虑问题时的一类属性,属性的集合构成一个维。



 

 

相关推荐
要想在百度八亿网页的数据海洋中找到你所要的信息, 人工方式需要1200 多人年,而百度搜索技术不到1 秒钟。人 们被数据淹没,却渴望知识。商务智能技术已成为当今企业 获取竞争优势的源泉之一。商务智能通常被理解为将企业中 现有的数据转化为知识,帮助企业做出明智决策的IT工具集。 其中数据仓库、OLAP数据挖掘技术是商务智能的重要组成 部分。商务智能的关键在于如何从众多来自不同企业运作系 统的数据中,提取有用数据,进行清理以保证数据的正确性, 然后经过抽取、转换、装载合并到一个企业级的数据仓库里, 从而得到企业数据的一个全局视图,并在此基础上利用适当 的查询分析、数据挖掘、OLAP等技术工具对其进行分析处理, 最终将知识呈现给管理者,为管理者的决策过程提供支持。 可见,数据仓库技术是商业智能系统的基础,在智能系统开 发过程中,星型模式设计又是数据仓库设计的基本概念之一。 星型模式是由位于中央的事实环绕在四周的维度 组成的,事实中的每一行与每个维度的多行建立关系, 查询结果是通过将一个或者多个维度事实结合之后产 生的,因此每一个维度事实都有一个“一对多”的连 接关系,维度的主键是事实中的外键。随着企业交易量 的越来越多,星型模式中的事实数据记录行数会不断增加, 而且交易数据一旦生成历史是不能改变的,即便不得不变动, 如对发现以前的错误数字做修改,这些修改后的数据也会作 为一行新纪录添加到事实中。与事实总是不断增加记录 的行数不同,维度的变化不仅是增加记录的行数,而且据 需求不同维度属性本身也会发生变化。本文着重讨论数据 仓库维度的变化类型及其更新技术。
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页