Think Locally, Act Globally: Federated Learning with Local and Global Representations

Federated Learning 专栏收录该内容
1 篇文章 0 订阅

Think Locally, Act Globally: Federated Learning with Local and Global Representations

  • NeurIPS 2019 workshop

1. Method

1.1 LG-FedAvg

  • 通过各节点的本地数据 X k , Y k X_k, Y_k Xk,Yk训练local representation(其中 Y k Y_k Yk可以是label,也可以是 X k X_k Xk本身,还可以是自定义的label) H k H_k Hk,auxiliary网络 a k a_k ak,以及本地的global网络 g k g_k gk
  • server端通过加权的方式( n k / n n_k/n nk/n),汇总各节点的 g k g_k gk,得到global aggregation model g g g

1.2 Fair Reperesentation Learning

  • a k a_k ak平行结构,训练对抗网络(看的不是很懂。。。)

2. 优势

  • 只通信部分网络 g k g_k gk的参数,大大减少了通信量
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

小北90

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值