梯度含义的理解

文章探讨了梯度和导数的区别,指出梯度是函数值增长最快的方向,是自变量的变化方向,而非切线方向。通过将三维函数投影到二维平面,梯度表现为切线的法向量,但在原自变量空间中,梯度对应的是x和y轴上的分量。理解梯度的关键在于确定因变量,并注意在不同维度下的表示差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度的概念贯穿很多机器学习算法,理解其概念很重要。但是很多人仍然很迷惑,对梯度和导数的概念混淆不请,这里说下我自己的理解。

首先网络和教材有很多关于梯度的解释,诸如:

1、梯度是某点切平面的法向量,

2、梯度是多元函数增长最快的自变量的方向

3、梯度方向垂直于xoy平面的等高线

一般的认知某点的梯度和某点的导数有很大的联系,其中导数是某条曲线的切线,切线是函数值变化最快的方向,而梯度则是函数值增加最快的方向(增加也是变化),因此直观上讲,在某些情况应该可以认为导数和梯度是一回事(都是使函数值变化最快,不管同向还是反向,至少方向是“共线”的)。但是在梯度的定义这,从1和3的定义可知,法向量垂直这样的字眼把人整的云里雾里,如下图是两条曲线的梯度方向:

那么,问题到底出在哪?为什么一向认为的切线方向成了垂直呢?

其实,梯度确实是切线方向,只是我们看的所谓法向量,垂直是站在自变量的角度。而切线方向是针对因变量的角度。这句话和第2条解释相通,即梯度是使函数增长(因变量)最快的自变量的方向,简称梯度是函数增长最快的方向。

举例说明:

先以2元函数z=f(x,y)为例,如图。

认知梯度首先明确:自变量是x和y,而因变量(函数)是z,梯度是让z增长最快的方向。

这里在三维坐标系下,z=f(x,y)是一个三维曲面,就好比一座山峰,目前我处于A点,要想让z增长的最快,就沿着图中上山最抖的方向走。此时上山最抖的方向是沿着函数曲面的切线方向,从这里看出梯度还是相切。那么为什么变成垂直方向了呢?

重新看下定义2,梯度是让z增长最快时自变量的方向,也就是x和y的方向。意思是这条切线在x和y的方向是怎么样的,即梯度最后要归结于x, y如何变化。

而要想得到梯度在x,y的方向,可以先投影到xoy平面上,即把曲面降维。因为x, y, z轴相互正交,梯度在z上的投影对梯度在x, y上的分量没作用。

从降维后的曲线可知,现在梯度的方向确实是垂直方向,也可以说是切线(切平面)的法线方向,这还没完,这只是梯度在xoy平面的形态,而非在自变量即x轴和y轴上的体现。此时接分别往x轴和y轴上投影,就得到了x方向的梯度fx'和y方向的梯度fy'

这里顺便提一下,如果我们认为xoy平面的切线是梯度,则此时的因变量不是z,而是y(x是因变量)或者x(y是自变量)。

所以,在认知梯度时要抓住一点,就是梯度是谁的梯度,谁是因变量。梯度对于因变量而言是切线方向,但是对于降低维度后的自变量组成的空间而言(变成等值线或等值面),梯度是切平面的法线。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值