动态规划求取连续数组最大和

using namespace std;
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <string.h>
#include<vector>
const int size=100;
int MaxSumOfArray[size]={0};
void maxsum(int array[],int n)
{
    memset(MaxSumOfArray,0,sizeof(int)*n);
    MaxSumOfArray[0]=array[0];
int currentSum=0;//这个变量应该有个更好的名字!

for(int i=1;i<size;i++){
  currentSum+=array[i];

     if(MaxSumOfArray[i-1]+currentSum>array[i]&&currentSum>=0)
     {
       MaxSumOfArray[i]=MaxSumOfArray[i-1]+currentSum;//增加新的子数组最大和
       currentSum=0;
     }
     else if(array[i]>MaxSumOfArray[i-1])//新的子数组最大和为当前元素的值
     {
       MaxSumOfArray[i]=array[i];
       currentSum=0;
     }
     else
       MaxSumOfArray[i]=MaxSumOfArray[i-1];//新的子数组最大和保持不变
    }
}

int main()
{

int array[size]={-1,-2,100};//输入数组
//此数组保存下标对应元素值为,从array数组 【0-下标】连续子数组的最大和。
int a[] = {10, -2, -3};  
  int b[] = {-10, -2, -3};  
  int c[] = {3, -2, 10}; 
  maxsum(a, 3) ;  
for(int i=0;i<3;i++)
cout<<MaxSumOfArray[i]<<endl;
  maxsum(b, 3) ;  
for(int i=0;i<3;i++)
cout<<MaxSumOfArray[i]<<endl;
  maxsum(c, 3) ;   
 for(int i=0;i<3;i++)
cout<<MaxSumOfArray[i]<<endl;
system("pause");
return 0;
}

网上有很多优化版本,不能容易体现出动态规划思想,为了说明问题未采取任何优化。 此段代码利用动态规划算法,求连续数组最大和。

1.用另一个等长数组保存连续数组的最大和以避免重复计算。空间换时间, 避免子问题重复。

2.我们通过子问题的最优解计算出上层问题最优解,例如:

MaxSumOfArray[i]=MaxSumOfArray[i-1]+currentSum;
MaxSumOfArray[i]=MaxSumOfArray[i-1];

所以我们看,这个问题 包含最优子结构和重叠子问题 ,因此他才适合使用动态规划思想。

文中代码,只是表达思想,并没有处理非法参数等异常情况。


二. 动态规划

设sum[i]为以第i个元素结尾且和最大的连续子数组。假设对于元素i,所有以它前面的元素结尾的子数组的长度都已经求得,那么以第i个元素结尾且和最大的连续子数组实际上,要么是以第i-1个元素结尾且和最大的连续子数组加上这个元素,要么是只包含第i个元素,即sum[i] = max(sum[i-1] + a[i], a[i])。可以通过判断sum[i-1] + a[i]是否大于a[i]来做选择,而这实际上等价于判断sum[i-1]是否大于0。由于每次运算只需要前一次的结果,因此并不需要像普通的动态规划那样保留之前所有的计算结果,只需要保留上一次的即可,因此算法的时间和空间复杂度都很小。

伪代码如下

result = a[1]
sum = a[1]

for i: 2 to LENGTH[a]
  if sum > 0
    sum += a[i]
  else
    sum = a[i]

  if sum > result
    result = sum

return result


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最大连续子序列和问题是指在一个序列中,找到一个连续的子序列,使得它们的和最大。这个问题可以使用分治法和动态规划算法来解决。 1. 分治法 使用分治法解最大连续子序列和问题的思路是:将原序列分成两个部分,最大子序列可能存在于左半部分、右半部分或跨越左右两个部分。分别计算这三种情况下的最大子序列和,然后最大值即可。 下面是使用分治法解最大连续子序列和问题的Python代码示例: ```python def max_subarray(nums: List[int]) -> int: return _max_subarray(nums, 0, len(nums) - 1) def _max_subarray(nums: List[int], left: int, right: int) -> int: if left == right: return nums[left] mid = (left + right) // 2 left_max = _max_subarray(nums, left, mid) right_max = _max_subarray(nums, mid + 1, right) # 计算跨越左右两个部分的最大子序列和 cross_max = nums[mid] left_cross_max = nums[mid] for i in range(mid - 1, left - 1, -1): left_cross_max += nums[i] cross_max = max(cross_max, left_cross_max) right_cross_max = nums[mid + 1] for i in range(mid + 2, right + 1): right_cross_max += nums[i] cross_max = max(cross_max, right_cross_max) return max(left_max, right_max, cross_max) ``` 在上面的代码中,我们使用递归的方式将原序列分成两个部分,然后计算跨越左右两个部分的最大子序列和、左半部分的最大子序列和、右半部分的最大子序列和,三者中的最大值作为整个序列的最大子序列和。 2. 动态规划 使用动态规划算法解最大连续子序列和问题的思路是:从头开始遍历序列,对于每一个位置i,计算以i结尾的最大子序列和,然后所有的最大子序列和的最大值作为问题的解。 具体来说,我们定义一个数组dp,其中dp[i]表示以i结尾的最大子序列和。对于dp[i]来说,它的值可以由dp[i-1]和nums[i]计算得到,即dp[i] = max(dp[i-1] + nums[i], nums[i])。 下面是使用动态规划算法解最大连续子序列和问题的Python代码示例: ```python def max_subarray(nums: List[int]) -> int: dp = [0] * len(nums) dp[0] = nums[0] max_sum = nums[0] for i in range(1, len(nums)): dp[i] = max(dp[i-1] + nums[i], nums[i]) max_sum = max(max_sum, dp[i]) return max_sum ``` 在上面的代码中,我们使用一个循环遍历整个序列,计算以每一个位置为结尾的最大子序列和,并且更新全局最大值。 希望这个回答能够帮到您!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值