给定一个数组A[0,1,…,n-1],请构建一个数组B[0,1,…,n-1],其中B中的元素B[i]=A[0]A[1]…*A[i-1]A[i+1]…*A[n-1]。不能使用除法。
直接
连乘数字得到B[i] 需要O(n^2)
B[i]的值可以看做下图的矩阵中每行的乘积。
下三角用连乘可以很容易求得,先算下三角中的连乘,即先计算出B[i]中的一部分,然后将上三角中的数也乘进去。这样一来就只需要两个循环就可以解决这个问题。时间复杂度是O(n);
其实你只需要知道这个是形成一个矩阵,然后每一行是用来计算B[i],每一行的内容则是A[0]到A[n-1]。利用上三角和下三角进行计算。
import java.util.ArrayList;
public class Solution {
public int[] multiply(int[] A) {
if(A==null||A.length==0)
return A;
int[] B=new int[A.length];
B[0]=1;
//下三角的每一行
for(int i=1;i<B.length;i++){
B[i]=B[i-1]*A[i-1];
}
//上三角的每一行
int tmp=1;
for(int j=B.length-2;j>=0;j--){
tmp=tmp*A[j+1];
B[j]*=tmp;
}
return B;
}
}