为了实现类似等价的sql:
SELECT COUNT(DISTINCT deviceID) FROM t_order_report;
为什么我要说类似等价呢? 因为从精确性、性能等角度还是存在很大的差别!
前置条件,场景为:
用户可以通过时间、套餐类型、订单状态等等查询条件,过滤出满足条件的设备数信息
因此使用deviceID+各种限制条件 作为Key存储达到去重效果的方式不可行。
如果你对去重结果的精准度没有特殊要求,使用cardinality聚合函数
AggregationBuilders.cardinality("deviceCount").field("deviceID").precisionThreshold(自定义一个精度范围100-40000)
优点:性能快,亿级别的记录在1秒内完成
缺点:存在只能保证最大40000条记录内的精确,超过的存在5%的误差,不适合需要精确去重场景
如果你对去重结果要求精确,使用termsagg聚合(类似group by)
AggregationBuilders.terms("deviceCount").field("deviceID").size(Integer.MAX_VALUE);
说明:默认只聚合10个桶,size(Integer.MAX_VALUE)可以指定桶个数
优点:结果精确
缺点:只适合聚合少量桶场景(100以内),否则性能极差(十万级的桶需要分钟级完成)
针对海量数据去重(多桶)场景,方法尝试:
scroll查询全量数据后手动去重
缺点:性能不达标
pass...
实现方式
按 floor
distinct,并取出 num 最大的一条记录
{
"size": 0,
"aggregations": {
"field1": {
"terms": {
"field": "floor",
"size": 20
},
"aggs": {
"num_top": {
"top_hits": {
"_source": true,
"size":1,
"sort": {"num":"asc"}
}
}
}
}
}
}
注:不可以分页
例如,下面的查询检索 message
中有 elasticsearch 值的 twitter,按喜好数量对它们进行排序并按用户 distinct(取排序后每个用户的第一条数据)。
GET /twitter/_search
{
"query": {
"match": {
"message": "elasticsearch"
}
},
"collapse" : {
"field" : "user"
},
"sort": ["likes"],
"from": 10
}
inner_hits
curl -X GET "localhost:9200/twitter/_search" -H 'Content-Type: application/json' -d'
{
"query": {
"match": {
"message": "elasticsearch"
}
},
"collapse" : {
"field" : "user",
"inner_hits": {
"name": "last_tweets",
"size": 5,
"sort": [{ "date": "asc" }]
},
"max_concurrent_group_searches": 4
},
"sort": ["likes"]
}
'
注:仅仅适用于 keyword 和数字类型
统计总数
按 floor
distinct 后总数,使用到了数值度量聚合
{
"aggs": {
"distinct": { //该参数 key 随意
"cardinality": {
"field": "floor"
}
}
}
}
// 相应
...
"aggregations" : {
"distinct" : {
"value" : 20
}
}
总结:目前elasticsearch 对海量数据去重,支持的并不友好,暂无好的解决方案