又见皇后 | ||||||
| ||||||
Description | ||||||
国际象棋中,皇后能攻击同一横线、同一竖线、同一斜线(45度)的敌人。 众所周知,有一个非常著名的算法问题,是求在一个n×n的国际象棋棋盘中最多能摆放多少个皇后,使其不能相互攻击。 今天我们暂且不要让问题如此理想化。假设棋盘上有一些障碍物,皇后不能摆在障碍物上,同时也不能穿过障碍物攻击别人。在此条件之下,棋盘上最多又能放多少个皇后?
图中黑色方块表示障碍物,圆点表示皇后 图2是一种最优摆法;图4、图5属于违规摆法 | ||||||
Input | ||||||
输入包含多组数据。 每组数据的第一行是一个整数n(1≤n≤8),表示棋盘的边长。之后的n行将描述棋盘,其中’X’表示该单元格有障碍物,’.’则表示没有。 n=0表示输入结束。 | ||||||
Output | ||||||
对于每组数据,请输出一个整数表示最多能在棋盘上放几个皇后,使它们相互不能攻击。 每个答案占一行。 | ||||||
Sample Input | ||||||
4 .X.. ...X XXX. ..X. 2 XX .X 3 .X. X.X .X. 0 | ||||||
Sample Output | ||||||
4 1 2 |
基础dfs,从第一个位子开始枚举,有两种枚举方法:1、不放皇后。2、放皇后+判断是否可行、可行则继续向下一个格子枚举,如果不行,回溯。
判断部分:横向判断+纵向判断+四个方向的斜着判断,如果遇到皇后,就是不可以的情况,回溯。
AC代码:
#include<stdio.h>
#include<string.h>
using namespace std;
char a[10][10];
int n;
int output;
int panduan(int x,int y)
{
for(int i=x-1;i>=0;i--)
{
if(a[i][y]=='0')
return 0;
if(a[i][y]=='X')
break;
}
for(int i=y-1;i>=0;i--)
{
if(a[x][i]=='0')
return 0;
if(a[x][i]=='X')
break;
}
int xx,yy;
xx=x-1;
yy=y-1;
while(1)
{
if(xx>=0&&yy>=0)
{
if(a[xx][yy]=='0')
return 0;
if(a[xx][yy]=='X')
break;
xx--;
yy--;
}
else
break;
}
xx=x+1;
yy=y+1;
while(1)
{
if(xx<n&&yy<n)
{
if(a[xx][yy]=='0')
return 0;
if(a[xx][yy]=='X')
break;
xx++;
yy++;
}
else
break;
}
xx=x-1;
yy=y+1;
while(1)
{
if(xx<n&&yy<n)
{
if(a[xx][yy]=='0')
return 0;
if(a[xx][yy]=='X')
break;
xx--;
yy++;
}
else
break;
}
xx=x+1;
yy=y-1;
while(1)
{
if(xx<n&&yy<n)
{
if(a[xx][yy]=='0')
return 0;
if(a[xx][yy]=='X')
break;
xx++;
yy--;
}
else
break;
}
return 1;
}
void dfs(int k,int sum)
{
int x,y;
if(k==n*n)
{
if(sum>output)
{
output=sum;
return ;
}
}
else
{
x=k/n;
y=k%n;
if(a[x][y]=='.'&&panduan(x,y))
{
a[x][y]='0';
dfs(k+1,sum+1);
a[x][y]='.';
}
///
dfs(k+1,sum);
}
}
int main()
{
while(~scanf("%d",&n))
{
if(n==0)break;
for(int i=0;i<n;i++)
{
scanf("%s",a[i]);
}
output=0;
dfs(0,0);
printf("%d\n",output);
}
}