hrbust 1283 又见皇后【dfs】

又见皇后
Time Limit: 3000 MSMemory Limit: 65536 K
Total Submit: 118(31 users)Total Accepted: 44(24 users)Rating: Special Judge: No
Description
国际象棋中,皇后能攻击同一横线、同一竖线、同一斜线(45度)的敌人。

众所周知,有一个非常著名的算法问题,是求在一个n×n的国际象棋棋盘中最多能摆放多少个皇后,使其不能相互攻击。

今天我们暂且不要让问题如此理想化。假设棋盘上有一些障碍物,皇后不能摆在障碍物上,同时也不能穿过障碍物攻击别人。在此条件之下,棋盘上最多又能放多少个皇后?

                            

图中黑色方块表示障碍物,圆点表示皇后

2是一种最优摆法;图4、图5属于违规摆法

Input
输入包含多组数据。

每组数据的第一行是一个整数n1n8),表示棋盘的边长。之后的n行将描述棋盘,其中’X’表示该单元格有障碍物,’.’则表示没有。

n=0表示输入结束。

Output
对于每组数据,请输出一个整数表示最多能在棋盘上放几个皇后,使它们相互不能攻击。
每个答案占一行。

Sample Input
4

.X..

...X

XXX.

..X.

2

XX

.X

3

.X.

X.X

.X.

0

Sample Output
4

1

2


基础dfs,从第一个位子开始枚举,有两种枚举方法:1、不放皇后。2、放皇后+判断是否可行、可行则继续向下一个格子枚举,如果不行,回溯。

判断部分:横向判断+纵向判断+四个方向的斜着判断,如果遇到皇后,就是不可以的情况,回溯。

AC代码:

#include<stdio.h>
#include<string.h>
using namespace std;
char a[10][10];
int n;
int output;
int  panduan(int x,int y)
{
    for(int i=x-1;i>=0;i--)
    {
        if(a[i][y]=='0')
        return 0;
        if(a[i][y]=='X')
        break;
    }
    for(int i=y-1;i>=0;i--)
    {
        if(a[x][i]=='0')
        return 0;
        if(a[x][i]=='X')
        break;
    }
    int xx,yy;
    xx=x-1;
    yy=y-1;
    while(1)
    {
        if(xx>=0&&yy>=0)
        {
            if(a[xx][yy]=='0')
            return 0;
            if(a[xx][yy]=='X')
            break;
            xx--;
            yy--;
        }
        else
        break;
    }
    xx=x+1;
    yy=y+1;
    while(1)
    {
        if(xx<n&&yy<n)
        {
            if(a[xx][yy]=='0')
            return 0;
            if(a[xx][yy]=='X')
            break;
            xx++;
            yy++;
        }
        else
        break;
    }
    xx=x-1;
    yy=y+1;
    while(1)
    {
        if(xx<n&&yy<n)
        {
            if(a[xx][yy]=='0')
            return 0;
            if(a[xx][yy]=='X')
            break;
            xx--;
            yy++;
        }
        else
        break;
    }
    xx=x+1;
    yy=y-1;
    while(1)
    {
        if(xx<n&&yy<n)
        {
            if(a[xx][yy]=='0')
            return 0;
            if(a[xx][yy]=='X')
            break;
            xx++;
            yy--;
        }
        else
        break;
    }
    return 1;
}
void dfs(int k,int sum)
{
    int x,y;
    if(k==n*n)
    {
        if(sum>output)
        {
            output=sum;
            return ;
        }
    }
    else
    {
        x=k/n;
        y=k%n;
        if(a[x][y]=='.'&&panduan(x,y))
        {
            a[x][y]='0';
            dfs(k+1,sum+1);
            a[x][y]='.';
        }
        ///
        dfs(k+1,sum);
    }
}
int main()
{
    while(~scanf("%d",&n))
    {
        if(n==0)break;
        for(int i=0;i<n;i++)
        {
            scanf("%s",a[i]);
        }
        output=0;
        dfs(0,0);
        printf("%d\n",output);
    }
}
















内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值