hrbust 1283 又见皇后【dfs】

又见皇后
Time Limit: 3000 MSMemory Limit: 65536 K
Total Submit: 118(31 users)Total Accepted: 44(24 users)Rating: Special Judge: No
Description
国际象棋中,皇后能攻击同一横线、同一竖线、同一斜线(45度)的敌人。

众所周知,有一个非常著名的算法问题,是求在一个n×n的国际象棋棋盘中最多能摆放多少个皇后,使其不能相互攻击。

今天我们暂且不要让问题如此理想化。假设棋盘上有一些障碍物,皇后不能摆在障碍物上,同时也不能穿过障碍物攻击别人。在此条件之下,棋盘上最多又能放多少个皇后?

                            

图中黑色方块表示障碍物,圆点表示皇后

2是一种最优摆法;图4、图5属于违规摆法

Input
输入包含多组数据。

每组数据的第一行是一个整数n1n8),表示棋盘的边长。之后的n行将描述棋盘,其中’X’表示该单元格有障碍物,’.’则表示没有。

n=0表示输入结束。

Output
对于每组数据,请输出一个整数表示最多能在棋盘上放几个皇后,使它们相互不能攻击。
每个答案占一行。

Sample Input
4

.X..

...X

XXX.

..X.

2

XX

.X

3

.X.

X.X

.X.

0

Sample Output
4

1

2


基础dfs,从第一个位子开始枚举,有两种枚举方法:1、不放皇后。2、放皇后+判断是否可行、可行则继续向下一个格子枚举,如果不行,回溯。

判断部分:横向判断+纵向判断+四个方向的斜着判断,如果遇到皇后,就是不可以的情况,回溯。

AC代码:

#include<stdio.h>
#include<string.h>
using namespace std;
char a[10][10];
int n;
int output;
int  panduan(int x,int y)
{
    for(int i=x-1;i>=0;i--)
    {
        if(a[i][y]=='0')
        return 0;
        if(a[i][y]=='X')
        break;
    }
    for(int i=y-1;i>=0;i--)
    {
        if(a[x][i]=='0')
        return 0;
        if(a[x][i]=='X')
        break;
    }
    int xx,yy;
    xx=x-1;
    yy=y-1;
    while(1)
    {
        if(xx>=0&&yy>=0)
        {
            if(a[xx][yy]=='0')
            return 0;
            if(a[xx][yy]=='X')
            break;
            xx--;
            yy--;
        }
        else
        break;
    }
    xx=x+1;
    yy=y+1;
    while(1)
    {
        if(xx<n&&yy<n)
        {
            if(a[xx][yy]=='0')
            return 0;
            if(a[xx][yy]=='X')
            break;
            xx++;
            yy++;
        }
        else
        break;
    }
    xx=x-1;
    yy=y+1;
    while(1)
    {
        if(xx<n&&yy<n)
        {
            if(a[xx][yy]=='0')
            return 0;
            if(a[xx][yy]=='X')
            break;
            xx--;
            yy++;
        }
        else
        break;
    }
    xx=x+1;
    yy=y-1;
    while(1)
    {
        if(xx<n&&yy<n)
        {
            if(a[xx][yy]=='0')
            return 0;
            if(a[xx][yy]=='X')
            break;
            xx++;
            yy--;
        }
        else
        break;
    }
    return 1;
}
void dfs(int k,int sum)
{
    int x,y;
    if(k==n*n)
    {
        if(sum>output)
        {
            output=sum;
            return ;
        }
    }
    else
    {
        x=k/n;
        y=k%n;
        if(a[x][y]=='.'&&panduan(x,y))
        {
            a[x][y]='0';
            dfs(k+1,sum+1);
            a[x][y]='.';
        }
        ///
        dfs(k+1,sum);
    }
}
int main()
{
    while(~scanf("%d",&n))
    {
        if(n==0)break;
        for(int i=0;i<n;i++)
        {
            scanf("%s",a[i]);
        }
        output=0;
        dfs(0,0);
        printf("%d\n",output);
    }
}
















内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值