51nod 1202 子序列个数【dp】好题!

题目来源:  福州大学 OJ
基准时间限制:1 秒 空间限制:131072 KB 分值: 40  难度:4级算法题

子序列的定义:对于一个序列a=a[1],a[2],......a[n]。则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。
例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量。由于答案比较大,输出Mod 10^9 + 7的结果即可。
Input
第1行:一个数N,表示序列的长度(1 <= N <= 100000)
第2 - N + 1行:序列中的元素(1 <= a[i] <= 100000)
Output
输出a的不同子序列的数量Mod 10^9 + 7。
Input示例
4
1
2
3
2
Output示例
13

思路:


1、计数问题,考虑dp,设定dp【i】表示以a【i】结尾的不重复子序列个数。


2、那么我们考虑其状态转移方程:

①dp【i】=dp【i-1】*2+1;(a【i】没有出现过);

②dp【i】=dp【i-1】*2-dp【上一次a【i】出现过的位子-1】;

考虑如何理解这两个递推式:

①对于假设我们有序列:

132

那么很显然,以1结尾的子序列有:

1

那么以3结尾的子序列有:

1 13

3

那么以2结尾的子序列有:

1 13

3

12 132

32

2

很显然,如果a【i】没有出现过,那么就是在以a【i-1】结尾的基础上,全部内容的后边加上一个a【i】得到一堆新的子序列,+1很明显就是表示加上a【i】这个子序列。

②同理,对于第二种递推式的理解,主要是去掉重复部分。


3、因为有减法,所以取模运算过程需要注意。


Ac代码:

#include<stdio.h>
#include<string.h>
using namespace std;
#define mod 1000000007
#define ll __int64
ll dp[1000060];
ll a[1000060];
ll pos[1000060];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        memset(dp,0,sizeof(dp));
        memset(pos,-1,sizeof(pos));
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
        for(int i=0;i<n;i++)
        {
            if(i==0)
            {
                dp[i]=1;
            }
            else
            {
                if(pos[a[i]]==-1)
                {
                    dp[i]=dp[i-1]*2+1;
                }
                else
                {
                    dp[i]=dp[i-1]*2-dp[pos[a[i]]-1];
                }
            }
            pos[a[i]]=i;
            dp[i]=(dp[i]+mod)%mod;
        }
        printf("%I64d\n",(dp[n-1]+mod)%mod);
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值