子序列的定义:对于一个序列a=a[1],a[2],......a[n]。则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。
例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量。由于答案比较大,输出Mod 10^9 + 7的结果即可。
Input
第1行:一个数N,表示序列的长度(1 <= N <= 100000) 第2 - N + 1行:序列中的元素(1 <= a[i] <= 100000)
Output
输出a的不同子序列的数量Mod 10^9 + 7。
Input示例
4 1 2 3 2
Output示例
13
思路:
1、计数问题,考虑dp,设定dp【i】表示以a【i】结尾的不重复子序列个数。
2、那么我们考虑其状态转移方程:
①dp【i】=dp【i-1】*2+1;(a【i】没有出现过);
②dp【i】=dp【i-1】*2-dp【上一次a【i】出现过的位子-1】;
考虑如何理解这两个递推式:
①对于假设我们有序列:
132
那么很显然,以1结尾的子序列有:
1
那么以3结尾的子序列有:
1 13
3
那么以2结尾的子序列有:
1 13
3
12 132
32
2
很显然,如果a【i】没有出现过,那么就是在以a【i-1】结尾的基础上,全部内容的后边加上一个a【i】得到一堆新的子序列,+1很明显就是表示加上a【i】这个子序列。
②同理,对于第二种递推式的理解,主要是去掉重复部分。
3、因为有减法,所以取模运算过程需要注意。
Ac代码:
#include<stdio.h>
#include<string.h>
using namespace std;
#define mod 1000000007
#define ll __int64
ll dp[1000060];
ll a[1000060];
ll pos[1000060];
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(dp,0,sizeof(dp));
memset(pos,-1,sizeof(pos));
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
for(int i=0;i<n;i++)
{
if(i==0)
{
dp[i]=1;
}
else
{
if(pos[a[i]]==-1)
{
dp[i]=dp[i-1]*2+1;
}
else
{
dp[i]=dp[i-1]*2-dp[pos[a[i]]-1];
}
}
pos[a[i]]=i;
dp[i]=(dp[i]+mod)%mod;
}
printf("%I64d\n",(dp[n-1]+mod)%mod);
}
}