The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction.
At some points on the road there are n friends, and i-th of them is standing at the point xi meters and can move with any speed no greater than vi meters per second in any of the two directions along the road: south or north.
You are to compute the minimum time needed to gather all the n friends at some point on the road. Note that the point they meet at doesn't need to have integer coordinate.
The first line contains single integer n (2 ≤ n ≤ 60 000) — the number of friends.
The second line contains n integers x1, x2, ..., xn (1 ≤ xi ≤ 109) — the current coordinates of the friends, in meters.
The third line contains n integers v1, v2, ..., vn (1 ≤ vi ≤ 109) — the maximum speeds of the friends, in meters per second.
Print the minimum time (in seconds) needed for all the n friends to meet at some point on the road.
Your answer will be considered correct, if its absolute or relative error isn't greater than 10 - 6. Formally, let your answer be a, while jury's answer be b. Your answer will be considered correct if holds.
3 7 1 3 1 2 1
2.000000000000
4 5 10 3 2 2 3 2 4
1.400000000000
In the first sample, all friends can gather at the point 5 within 2 seconds. In order to achieve this, the first friend should go south all the time at his maximum speed, while the second and the third friends should go north at their maximum speeds.
题目大意:
给你N个人的位子,以及N个人的速度,最终希望这些人都汇聚到一个点上,问最短时间,地点任选。
思路:
1、听说三分最终汇聚的地点也是可以做的。
2、考虑最终解时间,随着时间的增加,汇聚到一点上的可能就越大,那么这里包含一个单调性,我们可以二分最终时间。
那么首先我们对所有人的位子按照从小到大排序。
对于当前二分出来的时间mid,求出每个点能够走到的最左边位子l【i】,以及能够走到的最右边的位子r【i】.
我们进行判断,如果出现了max(l【i】)>min(r【i】)的情况,那么肯定所有人就都能汇聚到一点了。
如果可以汇聚到一点,减小时间,否则增大时间。
过程维护最终解即可。
3、关于精度的确定问题,在这场比赛中学会了一个小技巧,卡二分次数。
我们可以考虑最大二分次数来代替精度问题。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1e-6
struct node
{
double pos,v;
}a[600050];
double l[600050];
double r[600050];
double minn[600050];
double maxn[600050];
int n;
int cmp(node a,node b)
{
return a.pos<b.pos;
}
int Slove(double mid)
{
for(int i=0;i<n;i++)
{
l[i]=a[i].pos-mid*a[i].v;
r[i]=a[i].pos+mid*a[i].v;
}
double posl=l[0];
double posr=r[0];
for(int i=1;i<n;i++)
{
posl=max(posl,l[i]);
posr=min(posr,r[i]);
if(posl>posr)return 0;
}
return 1;
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
{
scanf("%lf",&a[i].pos);
}
for(int i=0;i<n;i++)
{
scanf("%lf",&a[i].v);
}
int cnt=0;
sort(a,a+n,cmp);
double ans=-1;
double l=0;
double r=1000000005;
while(cnt<=150)
{
cnt++;
double mid=(l+r)/2;
if(Slove(mid)==1)
{
r=mid;
ans=mid;
}
else l=mid;
}
printf("%.8lf\n",ans);
}
}