Codeforces 675E Trains and Statistic【dp+线段树】好题!好题!

351 篇文章 2 订阅
46 篇文章 0 订阅

E. Trains and Statistic
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Vasya commutes by train every day. There are n train stations in the city, and at the i-th station it's possible to buy only tickets to stations from i + 1 to ai inclusive. No tickets are sold at the last station.

Let ρi, j be the minimum number of tickets one needs to buy in order to get from stations i to station j. As Vasya is fond of different useless statistic he asks you to compute the sum of all values ρi, j among all pairs 1 ≤ i < j ≤ n.

Input

The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of stations.

The second line contains n - 1 integer ai (i + 1 ≤ ai ≤ n), the i-th of them means that at the i-th station one may buy tickets to each station from i + 1 to ai inclusive.

Output

Print the sum of ρi, j among all pairs of 1 ≤ i < j ≤ n.

Examples
Input
4
4 4 4
Output
6
Input
5
2 3 5 5
Output
17
Note

In the first sample it's possible to get from any station to any other (with greater index) using only one ticket. The total number of pairs is 6, so the answer is also 6.

Consider the second sample:

  • ρ1, 2 = 1
  • ρ1, 3 = 2
  • ρ1, 4 = 3
  • ρ1, 5 = 3
  • ρ2, 3 = 1
  • ρ2, 4 = 2
  • ρ2, 5 = 2
  • ρ3, 4 = 1
  • ρ3, 5 = 1
  • ρ4, 5 = 1

Thus the answer equals 1 + 2 + 3 + 3 + 1 + 2 + 2 + 1 + 1 + 1 = 17.


题目大意:

一共有N个车站,现在给出从1~N-1号车站买的票最远可以到达的站点编号,保证a【i】>=i+1.

现在设定p【i】【j】表示从i到j需要购买的最少票数。

求Σp【i】【j】(1<=i<j<=n);


思路(思路源自:http://www.cnblogs.com/zhangchengc919/p/5507077.html):

(这题确实有点难度啊,想了很久也没相对正确方向);


1、首先我们设定dp【i】表示p【i】【n】。

那么如果我们逆序处理的话,有dp【i】=dp【temp】+1;(希望下一步的下一步尽可能的远);

这里temp是a【i+1】,a【i+2】,a【i+3】.................a【a【i】】中的最大值的位子。


2、现在我们要求的是Σ,那么我们设定dp【i】表示Σp【j】【k】(i<=j<k<=n);

那么就有dp【i】=dp【temp】+(n-i)-(a【i】-temp);

查询temp位子可以logn线段树查询,那么总时间复杂度O(nlogn);


Ac代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<climits>
using namespace std;
#define ll __int64
#define lson l, m, rt<<1
#define rson m+1, r, (rt<<1)|1

int tree[111111*4];
int posn[111111*4];
void pushup(int rt)
{
    if (tree[rt<<1] > tree[rt<<1|1])
    {
        tree[rt] = tree[rt<<1];
        posn[rt] = posn[rt<<1];
    }
    else
    {
        tree[rt] = tree[rt<<1|1];
        posn[rt] = posn[rt<<1|1];
    }
}
void build(int l, int r, int rt)
{
    if (l == r)
    {
        tree[rt]=0;
        posn[rt] = l;
    }
    else
    {
        int m = (l + r) >> 1;
        build(lson);
        build(rson);
        pushup(rt);
    }
}
void update(int p, int val, int l, int r, int rt)
{
    if (l == r)
    {
        tree[rt] = val;
    }
    else
    {
        int m = (l + r) >> 1;
        if (p <= m)
        {
            update(p, val, lson);
        }
        else
        {
            update(p, val, rson);
        }
        pushup(rt);
    }
}
int query(int L, int R, int l, int r, int rt, int *pos)
{
    if (L <= l && r <= R)
    {
        *pos = posn[rt];
        return tree[rt];
    }
    else
    {
        int m = (l + r) >> 1;
        int ret1 = INT_MIN;
        int ret2 = INT_MIN;
        int pa, pb;
        int *pos1 = &pa;
        int *pos2 = &pb;
        if (L <= m)
        {
            ret1 = query(L, R,  lson, pos1);
        }
        if (R > m)
        {
            ret2 = query(L, R, rson, pos2);
        }
        if (ret1 > ret2)
        {
            *pos = pa;
        }
        else
        {
            *pos = pb;
            ret1 = ret2;
        }
        return ret1;
    }
}
int a[105000];
ll dp[105000];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        memset(dp,0,sizeof(dp));
        ll ans=0;
        build(1,n,1);
        for(int i=1;i<=n-1;i++)scanf("%d",&a[i]);
        update(n,n,1,n,1);
        for(int i=n-1;i>=1;i--)
        {
            int temp;
            query(i+1,a[i],1,n,1,&temp);
            dp[i]=dp[temp]+(n-i)-(a[i]-temp);
            ans+=dp[i];
            update(i,a[i],1,n,1);
        }
        printf("%I64d\n",ans);
    }
}






引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值