Vasya commutes by train every day. There are n train stations in the city, and at the i-th station it's possible to buy only tickets to stations from i + 1 to ai inclusive. No tickets are sold at the last station.
Let ρi, j be the minimum number of tickets one needs to buy in order to get from stations i to station j. As Vasya is fond of different useless statistic he asks you to compute the sum of all values ρi, j among all pairs 1 ≤ i < j ≤ n.
The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of stations.
The second line contains n - 1 integer ai (i + 1 ≤ ai ≤ n), the i-th of them means that at the i-th station one may buy tickets to each station from i + 1 to ai inclusive.
Print the sum of ρi, j among all pairs of 1 ≤ i < j ≤ n.
4 4 4 4
6
5 2 3 5 5
17
In the first sample it's possible to get from any station to any other (with greater index) using only one ticket. The total number of pairs is 6, so the answer is also 6.
Consider the second sample:
- ρ1, 2 = 1
- ρ1, 3 = 2
- ρ1, 4 = 3
- ρ1, 5 = 3
- ρ2, 3 = 1
- ρ2, 4 = 2
- ρ2, 5 = 2
- ρ3, 4 = 1
- ρ3, 5 = 1
- ρ4, 5 = 1
Thus the answer equals 1 + 2 + 3 + 3 + 1 + 2 + 2 + 1 + 1 + 1 = 17.
题目大意:
一共有N个车站,现在给出从1~N-1号车站买的票最远可以到达的站点编号,保证a【i】>=i+1.
现在设定p【i】【j】表示从i到j需要购买的最少票数。
求Σp【i】【j】(1<=i<j<=n);
思路(思路源自:http://www.cnblogs.com/zhangchengc919/p/5507077.html):
(这题确实有点难度啊,想了很久也没相对正确方向);
1、首先我们设定dp【i】表示p【i】【n】。
那么如果我们逆序处理的话,有dp【i】=dp【temp】+1;(希望下一步的下一步尽可能的远);
这里temp是a【i+1】,a【i+2】,a【i+3】.................a【a【i】】中的最大值的位子。
2、现在我们要求的是Σ,那么我们设定dp【i】表示Σp【j】【k】(i<=j<k<=n);
那么就有dp【i】=dp【temp】+(n-i)-(a【i】-temp);
查询temp位子可以logn线段树查询,那么总时间复杂度O(nlogn);
Ac代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<climits>
using namespace std;
#define ll __int64
#define lson l, m, rt<<1
#define rson m+1, r, (rt<<1)|1
int tree[111111*4];
int posn[111111*4];
void pushup(int rt)
{
if (tree[rt<<1] > tree[rt<<1|1])
{
tree[rt] = tree[rt<<1];
posn[rt] = posn[rt<<1];
}
else
{
tree[rt] = tree[rt<<1|1];
posn[rt] = posn[rt<<1|1];
}
}
void build(int l, int r, int rt)
{
if (l == r)
{
tree[rt]=0;
posn[rt] = l;
}
else
{
int m = (l + r) >> 1;
build(lson);
build(rson);
pushup(rt);
}
}
void update(int p, int val, int l, int r, int rt)
{
if (l == r)
{
tree[rt] = val;
}
else
{
int m = (l + r) >> 1;
if (p <= m)
{
update(p, val, lson);
}
else
{
update(p, val, rson);
}
pushup(rt);
}
}
int query(int L, int R, int l, int r, int rt, int *pos)
{
if (L <= l && r <= R)
{
*pos = posn[rt];
return tree[rt];
}
else
{
int m = (l + r) >> 1;
int ret1 = INT_MIN;
int ret2 = INT_MIN;
int pa, pb;
int *pos1 = &pa;
int *pos2 = &pb;
if (L <= m)
{
ret1 = query(L, R, lson, pos1);
}
if (R > m)
{
ret2 = query(L, R, rson, pos2);
}
if (ret1 > ret2)
{
*pos = pa;
}
else
{
*pos = pb;
ret1 = ret2;
}
return ret1;
}
}
int a[105000];
ll dp[105000];
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(dp,0,sizeof(dp));
ll ans=0;
build(1,n,1);
for(int i=1;i<=n-1;i++)scanf("%d",&a[i]);
update(n,n,1,n,1);
for(int i=n-1;i>=1;i--)
{
int temp;
query(i+1,a[i],1,n,1,&temp);
dp[i]=dp[temp]+(n-i)-(a[i]-temp);
ans+=dp[i];
update(i,a[i],1,n,1);
}
printf("%I64d\n",ans);
}
}