Hdu 5256 序列变换【最长不递减序列】

序列变换

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1757    Accepted Submission(s): 627


Problem Description
我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增。其中无论是修改前还是修改后,每个元素都必须是整数。
请输出最少需要修改多少个元素。
 

Input
第一行输入一个 T(1T10) ,表示有多少组数据

每一组数据:

第一行输入一个 N(1N105) ,表示数列的长度

第二行输入N个数 A1,A2,...,An

每一个数列中的元素都是正整数而且不超过 106
 

Output
对于每组数据,先输出一行

Case #i:

然后输出最少需要修改多少个元素。
 

Sample Input
  
  
2 2 1 10 3 2 5 4
 

Sample Output
  
  
Case #1: 0 Case #2: 1


思路:


最终我们希望找到类似:1 2 3 4 5 6 7 8 9 10 11 ................................的形状的序列为结果。

那么给出a【i】;

我们就希望找到a【i】-i最长不递减的序列作为不动的序列,其他部分进行改变,

那么ans=n-(a【i】-i的序列中,最长不递减序列的长度);


Ac代码:

#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int a[1050000];
int f[1050000];
int Slove(int n)
{
    int c=0;
    for(int i=1; i<=n; i++)
    {
        int t=a[i];
        if(i==1) f[++c]=t;
        else
        {
            if(t>=f[c]) f[++c]=t;
            else
            {
                int pos=upper_bound(f+1,f+c,t)-f;//二分找到数组中比t大的第一个元素的的地址。
                f[pos]=t;
            }
        }
    }
    return c;
}
int main()
{
    int kase=0;
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            a[i]=x-i;
        }
        printf("Case #%d:\n",++kase);
        printf("%d\n",n-Slove(n));
    }
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值