序列变换
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1757 Accepted Submission(s): 627
Problem Description
我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增。其中无论是修改前还是修改后,每个元素都必须是整数。
请输出最少需要修改多少个元素。
请输出最少需要修改多少个元素。
Input
第一行输入一个
T(1≤T≤10)
,表示有多少组数据
每一组数据:
第一行输入一个 N(1≤N≤105) ,表示数列的长度
第二行输入N个数 A1,A2,...,An 。
每一个数列中的元素都是正整数而且不超过 106 。
每一组数据:
第一行输入一个 N(1≤N≤105) ,表示数列的长度
第二行输入N个数 A1,A2,...,An 。
每一个数列中的元素都是正整数而且不超过 106 。
Output
对于每组数据,先输出一行
Case #i:
然后输出最少需要修改多少个元素。
Case #i:
然后输出最少需要修改多少个元素。
Sample Input
2 2 1 10 3 2 5 4
Sample Output
Case #1: 0 Case #2: 1
思路:
最终我们希望找到类似:1 2 3 4 5 6 7 8 9 10 11 ................................的形状的序列为结果。
那么给出a【i】;
我们就希望找到a【i】-i最长不递减的序列作为不动的序列,其他部分进行改变,
那么ans=n-(a【i】-i的序列中,最长不递减序列的长度);
Ac代码:
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int a[1050000];
int f[1050000];
int Slove(int n)
{
int c=0;
for(int i=1; i<=n; i++)
{
int t=a[i];
if(i==1) f[++c]=t;
else
{
if(t>=f[c]) f[++c]=t;
else
{
int pos=upper_bound(f+1,f+c,t)-f;//二分找到数组中比t大的第一个元素的的地址。
f[pos]=t;
}
}
}
return c;
}
int main()
{
int kase=0;
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
a[i]=x-i;
}
printf("Case #%d:\n",++kase);
printf("%d\n",n-Slove(n));
}
}