Codeforces 652D Nested Segments【离散化+思维+树状数组】

D. Nested Segments
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given n segments on a line. There are no ends of some segments that coincide. For each segment find the number of segments it contains.

Input

The first line contains a single integer n (1 ≤ n ≤ 2·105) — the number of segments on a line.

Each of the next n lines contains two integers li and ri ( - 109 ≤ li < ri ≤ 109) — the coordinates of the left and the right ends of the i-th segment. It is guaranteed that there are no ends of some segments that coincide.

Output

Print n lines. The j-th of them should contain the only integer aj — the number of segments contained in the j-th segment.

Examples
Input
4
1 8
2 3
4 7
5 6
Output
3
0
1
0
Input
3
3 4
1 5
2 6
Output
0
1
1

题目大意:

给你N个线段,保证线段的起点和终点没有重复(一个点只能作为一个起点或者终点),一共N个询问,问每个线段可以包含多少个线段。


思路:


1、对于N个线段来讲,我们先将所有线段按照l从小到大排序,那么问题就变成了:询问一个线段后边,有多少个线段的bl小于ar,并且br也小于ar,其实就是有多少个线段的br小于ar.因为如果一个线段的r小于了这个线段的r,而且现在l是从小到大排序的,那么这个线段b一定是线段a所包含的。


2、那么问题可以用树状数组来维护。

然而数据范围是比较大的,所以我们再套个离散化即可。


Ac代码:

#include<stdio.h>
#include<string.h>
#include<map>
#include<algorithm>
using namespace std;
#define N 1000000
struct node
{
    int l,r,pos;
}a[1200000];
int num[1200000];
int tree[1004005];//树
int ans[1000500];
int cmp(node a,node b)
{
    if(a.l!=b.l)
    return a.l<b.l;
    else return a.r<b.r;
}
int lowbit(int x)//lowbit
{
    return x&(-x);
}
int sum(int x)//求和求的是比当前数小的数字之和,至于这里如何实现,很简单:int sum=sum(a[i]);
{
    int sum=0;
    while(x>0)
    {
        sum+=tree[x];
        x-=lowbit(x);
    }
    return sum;
}
void add(int x,int c)//加数据。
{
    while(x<=N)
    {
        tree[x]+=c;
        x+=lowbit(x);
    }
}
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        int cnt=0;
        memset(tree,0,sizeof(tree));
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&a[i].l,&a[i].r);
            a[i].pos=i;
            num[cnt++]=a[i].l;
            num[cnt++]=a[i].r;
        }
        map<int ,int >s;
        int contz=1;
        sort(num,num+cnt);
        sort(a,a+n,cmp);
        for(int i=0;i<cnt;i++)
        {
            if(s[num[i]]==0)
            {
                s[num[i]]=contz;
                contz++;
            }
        }
        for(int i=0;i<n;i++)add(s[a[i].r],1);
        for(int i=0;i<n;i++)
        {
            add(s[a[i].r],-1);
            ans[a[i].pos]=sum(s[a[i].r]-1);
        }
        for(int i=0;i<n;i++)printf("%d\n",ans[i]);
    }
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值