Problem 2233 ~APTX4869
Accept: 104 Submit: 398
Time Limit: 1000 mSec Memory Limit : 32768 KB
Problem Description
为了帮助柯南回到一米七四,阿笠博士夜以继日地研究APTX4869的解药。他得出了如下结果:
1.解药由n种原料构成;
2.对于两种不同的的原料a,b,它们之间有个影响值f(a,b);
3.需要把原料分成两个部分X,Y,每部分中至少有一种原料;
4.解药的效果由分别属于X,Y的原料之间,最小的影响值决定,即
博士需要你帮忙求出:在所有的方案中,最大的效果值可以是多少?
Input
多组数据(<=10),处理到EOF。
每组数据输入第一行为一个正整数n。
接下去是一个n行n列的整数矩阵,同一行的数以空格隔开。矩阵第i行j列表示第i种和第j种材料的影响值f(i,j)。给出的矩阵是对称的,即f(i,j)=f(j,i)。当i=j时,f(i,i)没有意义,矩阵该处的值为-1。
2<=n<=800。当i!=j时,0<=f(i,j)<=1000000;当i=j时,f(i,j)=-1。
Output
每组数据输出一行,表示最大可能的效果值。
Sample Input
3
-1 100 300
100 -1 200
300 200 -1
Sample Output
200
Source
福州大学第十三届程序设计竞赛思路:
因为希望这个最小值最大,那么我们首先将所有权值按照从小到大排序,那么我们只要贪心的合并到集合X即可,最后剩下一个点到集合Y.
那么此时我们小权值的边都加入了X集合,所以现在Y集合中剩余的一个点和X集合中所有点的连边中的最小权值,就是我们要得到的最大权值。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
int x,y,val;
}b[800*800*2+500];
int f[10050];
int a[1002][1002];
int n,ans,tmp;
int find(int a)
{
int r=a;
while(f[r]!=r)
r=f[r];
int i=a;
int j;
while(i!=r)
{
j=f[i];
f[i]=r;
i=j;
}
return r;
}
int merge(int a,int b)
{
int A,B;
A=find(a);
B=find(b);
if(A!=B)
{
f[B]=A;
return 1;
}
return 0;
}
int cmp(node a,node b)
{
return a.val<b.val;
}
int main()
{
while(~scanf("%d",&n))
{
int cnt=0;
memset(a,0,sizeof(a));
memset(f,0,sizeof(f));
memset(b,0,sizeof(b));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
if(i<j)
{
b[cnt].x=i;
b[cnt].y=j;
b[cnt].val=a[i][j];
}
cnt++;
}
}
ans=0x3f3f3f3f;
tmp=n-1;
sort(b,b+cnt,cmp);
for(int i=1;i<=n;i++)f[i]=i;
for(int i=0;i<cnt;i++)
{
if(tmp>=2)
{
if(merge(b[i].x,b[i].y)==1)tmp--;
}
else
{
if(find(b[i].x)!=find(b[i].y))ans=min(ans,b[i].val);
}
}
printf("%d\n",ans);
}
}