FZU 2233 ~APTX4869【贪心+并查集】

 Problem 2233 ~APTX4869

Accept: 104    Submit: 398
Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

为了帮助柯南回到一米七四,阿笠博士夜以继日地研究APTX4869的解药。他得出了如下结果:

1.解药由n种原料构成;

2.对于两种不同的的原料a,b,它们之间有个影响值f(a,b);

3.需要把原料分成两个部分X,Y,每部分中至少有一种原料;

4.解药的效果由分别属于X,Y的原料之间,最小的影响值决定,即

效果=min{f(a,b)|a∈X,b∈Y)}

博士需要你帮忙求出:在所有的方案中,最大的效果值可以是多少?

 Input

多组数据(<=10),处理到EOF。

每组数据输入第一行为一个正整数n。

接下去是一个n行n列的整数矩阵,同一行的数以空格隔开。矩阵第i行j列表示第i种和第j种材料的影响值f(i,j)。给出的矩阵是对称的,即f(i,j)=f(j,i)。当i=j时,f(i,i)没有意义,矩阵该处的值为-1。

2<=n<=800。当i!=j时,0<=f(i,j)<=1000000;当i=j时,f(i,j)=-1。

 Output

每组数据输出一行,表示最大可能的效果值。

 Sample Input

3
-1 100 300
100 -1 200
300 200 -1

 Sample Output

200

 Source

福州大学第十三届程序设计竞赛

思路:


因为希望这个最小值最大,那么我们首先将所有权值按照从小到大排序,那么我们只要贪心的合并到集合X即可,最后剩下一个点到集合Y.

那么此时我们小权值的边都加入了X集合,所以现在Y集合中剩余的一个点和X集合中所有点的连边中的最小权值,就是我们要得到的最大权值。


Ac代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
    int x,y,val;
}b[800*800*2+500];
int f[10050];
int a[1002][1002];
int n,ans,tmp;
int find(int a)
{
    int r=a;
    while(f[r]!=r)
    r=f[r];
    int i=a;
    int j;
    while(i!=r)
    {
        j=f[i];
        f[i]=r;
        i=j;
    }
    return r;
}
int merge(int a,int b)
{
    int A,B;
    A=find(a);
    B=find(b);
    if(A!=B)
    {
        f[B]=A;
        return 1;
    }
    return 0;
}
int cmp(node a,node b)
{
    return a.val<b.val;
}
int main()
{
    while(~scanf("%d",&n))
    {
        int cnt=0;
        memset(a,0,sizeof(a));
        memset(f,0,sizeof(f));
        memset(b,0,sizeof(b));
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                scanf("%d",&a[i][j]);
                if(i<j)
                {
                    b[cnt].x=i;
                    b[cnt].y=j;
                    b[cnt].val=a[i][j];
                }
                cnt++;
            }
        }
        ans=0x3f3f3f3f;
        tmp=n-1;
        sort(b,b+cnt,cmp);
        for(int i=1;i<=n;i++)f[i]=i;
        for(int i=0;i<cnt;i++)
        {
            if(tmp>=2)
            {
                if(merge(b[i].x,b[i].y)==1)tmp--;
            }
            else
            {
                if(find(b[i].x)!=find(b[i].y))ans=min(ans,b[i].val);
            }
        }
        printf("%d\n",ans);
    }
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值