C#Mathnet最小二乘法拟合自定义指数曲线

mathnet自带了Fit.Exponential来拟合指数曲线,但是拟合的效果跟Excel拟合差不多,往往这种程度的达不到项目的要求,需要使用Levenberg-Marquardt算法(LevenbergMarquardtSolver)或非线性最小二乘算法(NonlinearLeastSquares)来获得更好的拟合结果。 

 // 定义我们的函数
        // f(x; A1, B1,x0)=A1*e^(B1(x-x0))
        private Vector<double> MyModel(Vector<double> p, Vector<double> x)
        {
            var y = CreateVector.Dense<double>(x.Count);
            var A1 = p[0];
            var B1 = p[1];
            var x0 = p[2];
            for (int i = 0; i < x.Count; i++)
            {
                y[i] = A1 * Math.Exp((B1 * (x[i] - x0)));
            }
            return y;
        }
        //derivatives:求导数
        //       df/A1 = e^(B1*x-x0)
        //       df/B1 = A1*e^(B1*x-x0)*(x-x0)
        //       df/x0 = A1*e^(B1*x-x0)*(-B1)
        private Matrix<double> MyPrime(Vector<double> p, Vector<double> x)
        {
            var prime = Matrix<double>.Build.Dense(x.Count, p.Count);
            var A1 = p[0];
            var B1 = p[1];
            var x0 = p[2];
            for (int i = 0; i < x.Count; i++)
            {
                prime[i, 0] = Math.Exp(B1 * (x[i] - x0));
                prime[i, 1] = A1 * Math.Exp(B1 * (x[i] - x0)) * (x[i] - x0);
                prime[i, 2] = A1 * Math.Exp(B1 * (x[i] - x0)) * (-B1);
            }
            return prime;
        }


        private Vector<double> MyStart = new DenseVector(new double[] { 100, 0.01, 1 });

        private void btnFit_Click(object sender, EventArgs e)
        {
            var xData = data.Keys.ToArray();
            var yData = data.Values.ToArray();
            var result1 = Fit.Exponential(xData, yData);
            double goodnessOfFit1 = GoodnessOfFit.RSquared(xData.Select(x => result1.A * Math.Exp(result1.R * x)), yData);

            var obj = ObjectiveFunction.NonlinearModel(MyModel, MyPrime, new DenseVector(xData), new DenseVector(yData));
            var solver = new LevenbergMarquardtMinimizer();
            var result2 = solver.FindMinimum(obj, MyStart);
            double goodnessOfFit2 = GoodnessOfFit.RSquared(xData.Select(x => result2.MinimizingPoint[0] * Math.Exp((result2.MinimizingPoint[1] * (x - result2.MinimizingPoint[2])))), yData);

            // 输出结果

            Console.WriteLine("goodnessOfFit1:" + goodnessOfFit1);
            Console.WriteLine("goodnessOfFit2:" + goodnessOfFit2);


        }

自定义的拟合度相对较高

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值