问题描述
n个人参加某项特殊考试。
为了公平,要求任何两个认识的人不能分在同一个考场。
求是少需要分几个考场才能满足条件。
输入格式
第一行,一个整数n(1<n<100),表示参加考试的人数。
第二行,一个整数m,表示接下来有m行数据
以下m行每行的格式为:两个整数a,b,用空格分开 (1<=a,b<=n) 表示第a个人与第b个人认识。
输出格式
一行一个整数,表示最少分几个考场。
样例输入
5
8
1 2
1 3
1 4
2 3
2 4
2 5
3 4
4 5
样例输出
4
样例输入
5
10
1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5
样例输出
5
明显的dfs,找好剪枝点和结束点。
#include<bits/stdc++.h>
using namespace std;
int m[105][105];
int n;//学生人数
int t_t;//认识的关系数
int set[105][105];//记录每个班级的人
int len[105];//记录每个班级的长度
int sum = 0;//记录最小班级数
void dfs(int t, int tt){//t表示从谁开始,tt表示当前最小房间
if(tt >= sum)
return;//剪枝
if(t == n + 1){
sum = tt < sum ? tt : sum;
return;//分班结束返回
}
int i;
for(i=1;i<=n;i++){
if(len[i] == 0)
break;//如果此班无人,直接分入此班
int flag = 1;
for(int j=0;j<len[i];j++){
if(m[t][set[i][j]] == 1){
flag = 0;
break;
}
}
if(flag){
set[i][len[i]++] = t;
dfs(t + 1, tt);
set[i][len[i]--] = t;//回溯
}
}
if(i != n + 1){
//cout<<"开辟新空间"<<i<<endl;
set[i][len[i]++] = t;
dfs(t + 1, tt + 1);
set[i][len[i]--] = t;//回溯
}
}
int main(){
scanf("%d", &n);
sum = n;
scanf("%d", &t_t);
for(int i=0;i<t_t;i++){
int a,b;
scanf("%d %d", &a, &b);
m[a][b] = 1;
m[b][a] = 1;
}
dfs(1, 0);
cout<<sum;
return 0;
}