题目描述
《三国志》是一款很经典的经营策略类游戏。我们的小白同学是这款游戏的忠实玩家。现在他把游戏简化一下,地图上只有他一方势力,现在他只有一个城池,而他周边有一些无人占的空城,但是这些空城中有很多不同数量的同种财宝。我们的小白同学虎视眈眈的看着这些城池中的财宝。
按照游戏的规则,他只要指派一名武将攻占这座城池,里面的财宝就归他所有了。不过一量攻占这座城池,我们的武将就要留守,不能撤回。因为我们的小白手下有无数的武将,所以他不在乎这些。
从小白的城池派出的武将,每走一公理的距离就要消耗一石的粮食,而他手上的粮食是有限的。现在小白统计出了地图上城池间的道路,这些道路都是双向的,他想请你帮忙计算出他能得到 的最多的财宝数量。我们用城池的编号代表城池,规定小白所在的城池为0号城池,其他的城池从1号开始计数。
输入
本题包含多组数据:
首先,是一个整数T(1<=T<=20),代表数据的组数
然后,下面是T组测试数据。对于每组数据包含三行:
第一行:三个数字S,N,M
(1<=S<=1000000,1<=N<=100,1<=M<=10000)
S代表他手中的粮食(石),N代表城池个数,M代表道路条数。
第二行:包含M个三元组行 Ai,Bi,Ci(1<=A,B<=N,1<=C<=100)。
代表Ai,Bi两城池间的道路长度为Ci(公里)。
第三行:包含N个元素,Vi代表第i个城池中的财宝数量。(1<=V<=100)
首先,是一个整数T(1<=T<=20),代表数据的组数
然后,下面是T组测试数据。对于每组数据包含三行:
第一行:三个数字S,N,M
(1<=S<=1000000,1<=N<=100,1<=M<=10000)
S代表他手中的粮食(石),N代表城池个数,M代表道路条数。
第二行:包含M个三元组行 Ai,Bi,Ci(1<=A,B<=N,1<=C<=100)。
代表Ai,Bi两城池间的道路长度为Ci(公里)。
第三行:包含N个元素,Vi代表第i个城池中的财宝数量。(1<=V<=100)
输出
每组输出各占一行,输出仅一个整数,表示小白能得到的最大财富值。
样例输入
2 10 1 1 0 1 3 2 5 2 3 0 1 2 0 2 4 1 2 1 2 3
样例输出
25
题解:先使用迪杰斯特拉求出0到各点的最短路,求出最小权值,再用0/1背包求出满足条件的最优解。
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int map[101][101],sign[101],a[101],f[1000001]; int n,m; void dijkstr(){ int mixn,u=0,i,j; for(i=0;i<=n;i++){ mixn=100000; for(j=0;j<=n;j++){ if(sign[j]==0&&mixn>map[0][j]){ mixn=map[0][j]; u=j; } } sign[u]=1; for(j=0;j<=n;j++){ if(sign[j]==0&&map[0][j]>map[j][u]+mixn&&map[j][u]!=100000){ map[0][j]=map[j][u]+mixn; } } } } int main(){ int t,s,a1,b1,c1; cin >> t; while(t--){ cin >> s >> n >> m; for(int i=0;i<=n;i++){ for(int j=0;j<=n;j++){ map[i][j]=100000; } sign[i]=0; a[i]=0; } for(int i=0;i<m;i++){ scanf("%d%d%d",&a1,&b1,&c1); if(map[a1][b1]>c1){ map[a1][b1]=map[b1][a1]=c1; } } memset(f,0,sizeof(f)); for(int i=1;i<=n;i++){ scanf("%d",&a[i]); } dijkstr(); //背包 for(int i=1;i<=n;i++){ for(int j=s;j>=map[0][i];j--) f[j]=max(f[j],f[j-map[0][i]]+a[i]); } printf("%d\n",f[s]); } return 0; }