力扣:239.滑动窗口最大值
给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
思路:
首先的想法就是暴力求解,利用queue每次进入一个元素,弹出队首元素,然后遍历滑动窗口中的元素,得出最大值并插入结果vector中,复杂度为O(n^2)
,力扣提交结果超时。
第二种思路就是单调队列(用deque实现),保证每次队列中队首为最大元素值。
第一个k次遍历,将元素插入队列并组成单调队列,并将队首元素(该滑动窗口最大值)插入结果vector中。以后的每次插入新数值时,先判断队首元素是否满足其在滑动窗口内(判断其下标是否小于 i-k
),若不在,则弹出队首元素直到deque内均为滑动窗口内的元素。
接着继续插入元素并使其保持为单调队列,每插入一个元素之后,将队首元素插入结果vector中。
直到遍历完所有元素,返回结果vector。
代码如下(c++):
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
if(k==0)return {};//k==0时无解。
deque<int> deq;
vector<int> res;
for(int i =0;i<k;i++){
//当deq不为空,且此次要插入的元素nums[i]大于其前边的元素,
//则删除其前边的元素,以保证队列为单调队列
while(!deq.empty()&&nums[i]>nums[deq.back()]){
deq.pop_back();
}
//元素入队列
deq.push_back(i);//deq储存nums下标
}
res.push_back(nums[deq.front()]);//通过下标插入此次最大元素。
//接着插入其余元素
for(int i=k;i<nums.size();i++){
//队首元素不在滑动窗口之内将其弹出
while(!deq.empty()&&deq.front()<=i-k){
deq.pop_front();
}
//与上边一样道理
//当deq不为空,且此次要插入的元素nums[i]大于其前边的元素,
//则删除其前边的元素,以保证队列为单调队列
while(!deq.empty()&&nums[i]>nums[deq.back()]){
deq.pop_back();
}
deq.push_back(i);
//每次滑动窗口内均有一个最大值进入结果res中
res.push_back(nums[deq.front()]);
}
return res;
}
};
执行用时:204 ms, 在所有 C++ 提交中击败了88.87%的用户
内存消耗:128.6 MB, 在所有 C++ 提交中击败了85.21%的用户
通过测试用例:61 / 61