1.apply
apply会将待处理的对象拆分成多个片段,然后对各片段调用传入的函数,最后尝试将各片段组合到一起
2.head()
(1)默认查找前五条数据,head(n)查找前n条数据
(2)定义函数,(函数名为top)查找前n条数据
(3)apply()——–>分别求出抽烟和不抽烟的客户中消费占比排在前五的客户
(4)如果传给apply的函数能够接受其他参数或关键字,则可以将这些内容放在函数名后面一并传入

3.分位数和桶分析
pandas有一些能根据指定面元或样本分位数将数据拆分成多块的工具(比如cut和qcut)。
将这些函数跟groupby结合起来,就能非常轻松地实现对数据集的桶(bucket)或分位数
(quantile)分析了
(1)pd.cut
(2)定义函数,对数据进行统计
(3)定义函数,求加权平均数

Pandas 数据分析技巧
本文介绍了使用Pandas库进行数据分析的几种实用技巧,包括利用apply函数处理数据、使用head()函数快速预览数据集以及如何结合cut和qcut函数进行分位数分析。通过这些方法,读者可以更高效地完成数据预处理和探索性分析。
1238

被折叠的 条评论
为什么被折叠?



