- 博客(61)
- 收藏
- 关注
原创 [2023牛客多校10 H] Differential Equation (生成函数 多项式 PDE)
定义函数fkxx2−1fk−1′x,其中f0xx,求fnx0对998244353取模。0≤n≤2×1050≤x0≤998244352首先看到递推式含有导数,我们可以考虑序列f0xf1xf2x⋯的 EGF。由于x变量已存在,我们用二元函数FxyFxyi0∑∞i!fixyi我们希望在Fxy中看到fi′x,于是对。
2023-08-22 16:35:34
87
原创 [2023 杭电多校9 K] Cargo (生成函数 多项式 快速阶乘)
题意有 nnn 个商店卖 mmm 种商品,每个商店只无限卖一种商品,第 iii 个商店卖第 aia_iai 种类型商品。你将购物 kkk 次,每次随机选择某个商店购买一件商品。购物完后,以下情况你将不满意:存在一个商品类型 iii,你恰好购买了该类型商品 cic_ici 个,并且这 cic_ici 个商品恰好来自不同的商店。(cic_ici 表示卖类型 iii 的商品的商店个数)求购物 kkk 次后使你满意的概率,对 998 244 353998\,244\,353998244353 取
2023-08-15 19:06:02
87
原创 [2023牛客多校7 F] Counting Sequences (生成函数 多项式快速幂)
题意计算满足下列条件长度为 nnn 的序列 (a1,a2,⋯ ,an)(a_1,a_2,\cdots,a_n)(a1,a2,⋯,an) 的个数。对于 1≤i≤n1 \le i \le n1≤i≤n 满足 0≤ai≤2m0 \le a_i \le 2 ^ m0≤ai≤2m∑i=1ncnt1(ai⊕bi)=k\sum\limits_{i = 1} ^ {n} \text{cnt}_1(a_i \oplus b_i) = ki=1∑ncnt1(ai⊕bi)=k其中序列 bbb 为 (a
2023-08-08 09:04:33
122
原创 [2023杭电多校5 1005] Snake (生成函数)
有n个标号为12⋯n的球,放到m个无标号盒子 (盒内顺序有标号),且每个盒子球数不超过k,求方案数对998244353取模。1≤mk≤n≤106考虑每个盒子内球的生成函数i1∑kxi,那么m个盒子的生成函数就为i1∑kxim,那么方案数就为第n项系数由于球带标号,所以需要对答案全排列,也就是乘n!,又由于盒子不带标号,所以要对答案除m!,那么答案为m!n!
2023-08-02 15:47:40
132
原创 [2023杭电多校5 1002] GCD Magic (推式子 莫比乌斯反演 杜教筛)
求i1∑nj1∑ngcd2i−12j−1k对998244353取模。1≤n≤1090≤k≤10易证gcd2i−12j−12gcdij−1,代入得i1∑nj1∑n2gcdij−1k常规枚举dd1∑ni1∑nj1∑n2d−1kgcdijd把d拿到求和上界d1∑ni1∑⌊dn。
2023-08-01 17:01:37
118
原创 [2021 CCPC 广州 A] Math Ball (生成函数 多项式)
[2021 CCPC 广州 A] Math Ball (生成函数 多项式)
2022-10-16 00:33:06
601
原创 [2021CCPC 威海G] Shinyruo and KFC (下降幂多项式乘法+下降幂转普通幂+多项式多点求值)
[2021CCPC 威海G] Shinyruo and KFC (下降幂多项式乘法+下降幂转普通幂+多项式多点求值)
2022-10-04 15:22:49
739
原创 [2021ICPC济南 L] Strange Series (Bell 数 多项式exp)
[2021ICPC济南 L] Strange Series (Bell 数 多项式exp)
2022-08-30 13:27:21
318
原创 [Educational Codeforces Round 133 F] Bags with Balls (组合计数 推式子)
[Educational Codeforces Round 133 F] Bags with Balls (组合计数 推式子)
2022-08-05 15:38:39
171
原创 [2022 杭电多校5] Count Set (生成函数 分治NTT)
[2022 杭电多校5] Count Set (生成函数 分治NTT)
2022-08-03 11:22:33
349
4
原创 [2022 牛客多校2 E] Falfa with Substring (二项式反演 NTT)
[2022 牛客多校2 E] Falfa with Substring (二项式反演 NTT)
2022-08-01 10:49:35
215
原创 [2022 牛客多校4 C] Easy Counting Problem (生成函数 NTT)
[2022 牛客多校4 C] Easy Counting Problem (生成函数 NTT)
2022-08-01 10:48:51
211
原创 [2016 CCPC 杭州J] Just a Math Problem (莫比乌斯反演)
[2016 CCPC 杭州J] Just a Math Problem (莫比乌斯反演)
2022-07-15 09:02:02
126
原创 [Educational Codeforces Round 131 F] Points (计数 线段树)
Educational Codeforces Round 131 F
2022-07-13 16:29:00
158
原创 [AtCoder arc140 D] One to One (图论 计数 分治NTT)
题意初始有 nnn 个点,给定一个长度为 nnn 的数组 aia_iai,若 ai≠−1a_i \ne -1ai=−1,则有无向边 (i,ai)(i, a_i)(i,ai),若 ai=−1a_i = -1ai=−1,则点 iii 可以连向 1∼n1 \sim n1∼n 任意点,求所有图的联通块个数之和1≤n≤2×103,ai∈[1,n]∪{−1}1 \le n \le 2 \times 10 ^ 3, a_i \in [1, n] \cup \{-1\}1≤n≤2×103,ai∈[1,n]
2022-05-18 12:49:24
320
原创 [Wannafly 28] msc的背包 (生成函数 组合数)
题意有 nnn 种体积为 111 的物品和 mmm 种体积为 222 的物品,求选择物品的体积为 kkk 的方案数对 998244353998244353998244353 取模(1≤n,m≤106,1≤k≤9×108)(1 \le n, m \le 10 ^ 6,1 \le k \le 9 \times 10 ^ 8)(1≤n,m≤106,1≤k≤9×108)分析:所有体积为 111 的生成函数为F(x)=(∑i=0∞xi)nF(x) = \left ( \sum_{i = 0} ^ {\i
2022-05-04 21:22:27
464
1
原创 [2020 BSUIRPC] Function analysis (EGF NTT)
题意给定三个正整数 n,d,kn, d, kn,d,k ,现有排列 p=(1,2,3,⋯ ,n)p = (1,2,3,\cdots,n)p=(1,2,3,⋯,n) ,有 n−d+1n - d + 1n−d+1 个询问,对于每个询问有正整数 m(d≤m≤n)m (d \le m \le n)m(d≤m≤n) ,现从 ppp 中随机可重复地选取 mmm 个数构成序列 qqq ,求 qqq 中第 ddd 小数大于 kkk 的概率,对 998244353998244353998244353 取模。分析:对于
2022-04-13 12:58:30
171
原创 记一个经典不等式放缩
今晚闲来无事看了看 202220222022 年的济南一模最后一题第三问,发现真的是两年没碰高考数学手生疏了,不过还好做出来了。题意证明∑x=2n1lnx>1−1n\sum_{x = 2}^{n} \frac{1}{\ln x} > 1 - \frac{1}{n}x=2∑nlnx1>1−n1分析:1−1n=n−1n1 - \dfrac{1}{n} = \dfrac{n - 1}{n}1−n1=nn−1,左边是 nnn 个数求和,所以考虑裂项右边n−1n=11×2
2022-04-06 00:07:20
497
原创 [2021ICPC上海 B] Strange Permutations (容斥 分治NTT)
题意给定一个长度为 nnn 的 1∼n1 \sim n1∼n 排列 PPP,找到有多少个 1∼n1 \sim n1∼n 的排列 QQQ 使得 ∀i∈[1,n−1],Qi+1≠PQi\forall i \in[1, n - 1], Q_{i + 1} \ne P_{Q_i}∀i∈[1,n−1],Qi+1=PQi对 998244353998244353998244353 取模(1≤n≤105,1≤Pi≤n)(1 \le n \le 10 ^ 5, 1 \le P_i \le n)(1≤n≤105
2022-03-28 11:37:18
773
3
原创 [AtCoder abc234 F] Reordering (EGF NTT)
题意给定一个长度为 nnn 的字符串 SSS,计算有多少种非空子序列的排列,对 998244353998244353998244353 取模。1≤n≤5×1031 \le n \le 5\times 10^31≤n≤5×103分析:设 262626 个英文字母每个字母 uuu 的生成函数为(因为要计算排列,所以是 EGF\textbf{EGF}EGF)1+11!x+12!x2+⋯+1cntu!xcntu1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \cdots +
2022-01-09 16:59:50
773
原创 [AHOI2015] 航线规划 (离线 树链剖分)
题意给定一个 nnn 个点 mmm 条边的图,有不超过 400004000040000 次的操作,每次操作有三个参数 op,u,vop, u, vop,u,v若 op=0op =0op=0 ,表示删除点 u,vu,vu,v 之间的边若 op=1op = 1op=1,表示询问 u,vu, vu,v 之间有多少关键边关键边: u,vu, vu,v 联通,若删除该边 u,vu, vu,v 不连通,则为关键边分析:最朴素的想法是每次删完边之后 tarjan\text{tarjan}tarjan 缩点,再
2021-12-10 11:26:52
219
原创 生成函数理论
形式幂级数设数列 a0,a1,a2,⋯ ,an,⋯a_0,a_1, a_2,\cdots,a_n,\cdotsa0,a1,a2,⋯,an,⋯ 那么他的形式幂级数就为∑i=0∞aixi\sum_{i = 0}^{\infty}a_ix^ii=0∑∞aixi运算:设 f(x)=∑i=0∞aixi,g(x)=∑i=0∞bixif(x) = \sum_{i = 0}^{\infty}a_ix^i,g(x) = \sum_{i = 0}^{\infty}b_ix^if(x)=∑i=0∞aixi
2021-12-08 15:00:43
746
原创 [2021CCPC 威海M] 810975 (组合计数 容斥原理 多项式快速幂)
题意夜吹下了 nnn 盘酒馆战旗,吃了 mmm 次鸡,并且 kkk 连鸡,求方案数对 998244353998244353998244353 取模。分析:已知下了 nnn 盘棋,吃了 mmm 次鸡,所以有 n−mn - mn−m 局是未吃鸡的,所以考虑把 mmm 次鸡插空,n−mn - mn−m 局未吃鸡局有 n−m+1n - m + 1n−m+1 个空位,那么每个空的生成函数为1+x+x2+x3+⋯+xk1+x+x^2+x^3+\cdots+x^k1+x+x2+x3+⋯+xk所以所有的方案数
2021-12-08 14:59:43
1724
6
原创 [2021CCPC威海热身赛] Number Theory (打表 推公式)
题意求∑k=1n∑i∣k∑j∣iλ(i)λ(j)\sum_{k = 1}^{n}\sum_{i \mid k} \sum_{j \mid i} \lambda(i) \lambda(j)k=1∑ni∣k∑j∣i∑λ(i)λ(j)对 998244353998244353998244353 取模其中 λ(x)=(−1)∑iei,x=∏ipiei\lambda(x) = (-1)^{\sum\limits_{i}e_i},x=\prod\limits_{i}p_i^{e_i}λ(x)=(−1)i∑
2021-11-20 18:52:14
822
2
原创 [LNOI2014] LCA (离线差分 树链剖分)
题意给定一颗 nnn 个节点并且根为 111 的树和 qqq 次询问,每次询问给定 l,r,zl,r,zl,r,z 求∑i=lrdep(lca(i,z))\sum_{i=l}^{r} \text{dep}(\text{lca}(i,z))i=l∑rdep(lca(i,z))对 201314201314201314 取模dep(x)\text{dep}(x)dep(x) 表示点 xxx 的深度,lca(u,v)\text{lca}(u,v)lca(u,v) 表示 u,vu,vu,v 的最近公共祖先
2021-11-01 11:38:09
96
原创 [CQOI2015] 选数 (莫比乌斯反演 杜教筛)
题意求从区间 [L,R][L,R][L,R] 选出 nnn 个数使得最大公约数为 kkk 的方案数,对 109+710^9 + 7109+7 取模1≤n,k≤1091 \le n,k \le 10^91≤n,k≤1091≤L≤R≤1091 \le L \le R \le10^91≤L≤R≤109分析:根据题意∑a1=LR∑a2=LR⋯∑an=LR[gcd(a1,a2,⋯ ,an)=k]\sum_{a_1=L}^{R}\sum_{a_2=L}^{R}\cdots\sum_{a_n=L}^{R}[
2021-10-19 17:24:55
84
原创 [洛谷 P5221] Product (莫比乌斯反演)
题意求∏i=1n∏j=1nlcm(i,j)gcd(i,j)\prod_{i=1}^{n}\prod^{n}_{j=1}\frac{\text{lcm}(i,j)}{\gcd(i,j)}i=1∏nj=1∏ngcd(i,j)lcm(i,j)对 104857601104857601104857601 取模1≤n≤1061 \le n \le 10^61≤n≤106分析:将 lcm(i,j)=i⋅jgcd(i,j)\text{lcm}(i,j)=\dfrac{i \cdot j}{\gcd(
2021-10-19 10:14:31
94
1
原创 [SDOI 2014] 旅行 (树链剖分 动态开点权值线段树)
题意给定一棵 nnn 个节点的树,每个点都有一个宗教 cic_ici 和权值 wiw_iwi有 mmm 次操作:1.1.1. 将节点 xxx 的宗教 cxc_xcx 修改为 ccc2.2.2. 将节点 xxx 的权值 wxw_xwx 修改为 www3.3.3. 询问树上路径 uuu 到 vvv 宗教为 cuc_ucu 的权值和 (保证 cu=cvc_u=c_vcu=cv )4.4.4. 询问树上路径 uuu 到 vvv 宗教为 cuc_ucu 的最大权值 (保证 cu=cvc_u
2021-09-29 17:04:00
114
原创 [算法竞赛进阶指南] 雨天的尾巴 (线段树合并/树链剖分 权值线段树)
题意给定一棵 nnn 个节点的树和 mmm 次操作,每次操作把 uuu 到 vvv 路径上的节点加上一个颜色,最后询问每个点最多颜色的编号(如果相同取编号最小)1≤n,m≤105,1≤z≤1051 \le n,m \le 10^5,1\le z \le 10^51≤n,m≤105,1≤z≤105分析:每次操作修改树上的路径,可以用树链剖分维护一下,注意到 zzz 的范围是 10510^5105 ,所以我们不能在树上的每个节点上开一个桶记录颜色,所以可以用权值线段树的动态开点。不过这里有更优做法,因为
2021-09-28 09:11:02
179
原创 [2021 CCCC天梯赛] 可怜的简单题 (概率期望 莫比乌斯反演 杜教筛)
题意每次从 [1,n][1,n][1,n] 中选择一个数加到一个序列末尾,当 gcd(a1,⋯ ,an)=1\gcd(a_1,\cdots,a_n)=1gcd(a1,⋯,an)=1 时停止,求期望长度,对 ppp 取模1≤n≤1011,n<p≤10121\le n \le 10^{11},n< p \le 10 ^{12}1≤n≤1011,n<p≤1012分析:设 E(len)E(len)E(len) 为期望长度,那么根据期望定义E(len)=∑i=1∞P(len=i)⋅i
2021-09-23 12:36:41
1293
3
原创 [NC 200008] Lady Layton with Math (杜教筛)
题意求∑i=1n∑j=1nφ(gcd(i,j))\sum_{i=1}^{n}\sum_{j=1}^{n} \varphi(\gcd(i,j))i=1∑nj=1∑nφ(gcd(i,j))1≤n≤1091 \le n \le 10^91≤n≤109,对 109+710^9+7109+7 取模分析:枚举 gcd(i,j)\gcd(i,j)gcd(i,j)∑d=1nφ(d)∑i=1n∑j=1n[gcd(i,j)=d]\sum_{d=1}^{n}\varphi(d)\sum_{i=1}^{n}\
2021-09-23 08:59:04
91
原创 [2018 icpc徐州网络赛] Easy Math (杜教筛)
题意求∑i=1mμ(in)\sum_{i=1}^{m} \mu(in)i=1∑mμ(in)m≤2×109,n≤1012m \le 2×10^9,n\le 10^{12}m≤2×109,n≤1012分析:首先分析 nnn 有没有平方因子,如果有那么答案就是 000
2021-09-18 09:14:09
99
原创 [洛谷 P6055] [RC-02] GCD (莫比乌斯反演 杜教筛)
题意求∑i=1n∑j=1n∑p=1⌊nj⌋∑q=1⌊nj⌋[gcd(i,j)=1][gcd(p,q)=1]\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{p=1}^{\lfloor \frac{n}{j} \rfloor} \sum_{q=1}^{\lfloor \frac{n}{j} \rfloor}[\gcd(i,j)=1][\gcd(p,q)=1]i=1∑nj=1∑np=1∑⌊jn⌋q=1∑⌊jn⌋[gcd(i,j)=1][gcd(p,q)=1]对 99824
2021-09-17 20:34:22
109
原创 [2019 icpc西安邀请赛] Product (莫比乌斯反演 杜教筛)
题意求∏i=1n∏j=1n∏k=1nmgcd(i,j)[k∣gcd(i,j)] mod p\prod_{i=1} ^{n} \prod_{j=1}^{n}\prod_{k=1}^{n}m^{\gcd(i,j)[k \mid \gcd(i,j)]} \bmod pi=1∏nj=1∏nk=1∏nmgcd(i,j)[k∣gcd(i,j)]modpn≤109,m≤2×109,p≤2×109n \le10^9,m \le 2 ×10^9,p\le 2×10^9n≤109,m≤2×109,p≤2×109
2021-09-17 20:13:13
121
原创 [洛谷 P4318] 完全平方数 (杜教筛)
题意TTT 组询问,回答第 KiK_iKi 个不是完全平方数的正整数倍的数。1≤Ki≤109,T≤501\le K_i \le 10^9,T \le 501≤Ki≤109,T≤50分析:法一:如果一个数 nnn 不是完全平方数,那么 n=p1α1p2α2⋯pkαkn=p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_k^{\alpha_k}n=p1α1p2α2⋯pkαk 中 0≤αi≤10 \le \alpha_i \le 10≤αi≤1,所以就想到了莫
2021-09-15 20:26:31
124
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人