AI 语言大模型关键技术

AI 语言大模型关键技术主要涉及基于人类反馈强化学习、指令微调、模型提示等相关技术。

(1) 基于人类反馈强化学习

基于人类反馈强化学习(Reinforcement Learning from Human Feedback,RLHF),是指将人类标注者引入到大模型的学习过程中,训练与人类偏好对齐的奖励模型,进而有效指导语言大模型的训练,使得模型能够更好地遵循用户意图,生成符合用户偏好的内容。

基于人类反馈强化学习具体包括以下几个步骤:

1)训练监督策略模型:使用监督学习或无监督学习的方法,对一个预训练的语言模型进行训练,通过给予特定奖励或惩罚引导 AI 模型的行为,使其能够根据给定的输入预测输出或行为。

2)训练奖励模型:让标记员参与提供有关模型输出结果的反馈,对模型生成的多个输出或行为的质量或正确性进行排名或评分,这些反馈被转换为奖励信号,用于后续的强化学习过程。

3)采用近端策略优化进行强化学习:先通过监督学习策略生成近端策略优化(PPO)模型,经过奖励机制反馈最优结果后,再将结果用于优化和迭代 PPO模型参数。具体而言,在 PPO 模型训练过程中,智能系统通过尝试不同的行为,并根据每个行为获得的奖励来评估其质量,智能系统逐步改进行为策略。

(2)指令微调

指令微调 (Instruction Tuning) 是帮助语言大模型遵循人类指令,泛化至未知任务的学习方法。其特殊性在于使用(指令,输出)对的数据集进行训练,以增强LLMs的能力和可控性。指令微调可视作有监督微调的一种变体,但更侧重于让模型理解和遵循人类指令。

(3)模型提示

模型提示技术利用语言大模型的潜在能力,通过设计合适的语言指令提示来激发特定任务的能力。典型技术包括指令提示和思维链提示。指令提示提供额外上下文,重组任务以贴近预训练场景;思维链提示则激发多步推理能力,形成〈输入,思维链,输出〉结构,提高模型可解释性。

1.3 中国AI大模型产业发展市场驱动力

中国AI大模型产业发展受多领域需求驱动,如办公、制造、金融等,旨在降本增效、提高效率和降低风险。这些领域的创新推动AI大模型产业蓬勃发展,预示广阔市场前景。

1.3.1 办公场景

大模型结合传统软件,满足文案生成、PPT美化等需求,通过自然语言交互实现智能化办公。智能文档、演示、表格等工具,极大提高办公效率。智能会议则在策划、翻译、记录等环节提供支持,优化会议流程。

1.3.2 制造场景

AI引领制造行业变革,大模型结合EDA/CAE/CAD等工具提升研发设计效率,助力数字孪生和机器人,强化感知和执行任务能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI方案2025

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值