这种成熟度模型为GenAI解决方案的不断提升提供了一条路径,从基本数据准备和模型选择开始,逐步进行微调、评估,最终达到多代理系统、先进推理和负责任的人工智能实践阶段。
Level 0:准备数据
这个基础级别侧重于获取或创建必要的数据集,并确保这些数据集的质量和适用性,以供GenAI/LLM或基于代理的应用程序使用。这将涉及采购、清洁、准备、获取使用许可证,生成合成数据和数据工程和转换活动。
Level 1:选择模型与提示:提供模型
这是最简单的级别:选择一个LLM并提示它。处于这一级别的组织已经确定了合适的模型,并正在制定有效的提示与之进行交互。他们还有能力使用这些模型来执行通常通过提示工程驱动的特定任务。请注意,相同的提示可能对不同的LLM产生不同的结果。
模型选择、提示工程和检索:该过程始于选择一个适合特定任务的LLM模型,并使用专有数据进行微调。有效的提示工程指导模型的行为,信息检索机制从内部知识库中提取相关信息。这个检索步骤通常由企业搜索功能提供支持,允许模型访问组织内部资源中的相关文档和数据。
请注意,上下文学习和多次学习可以提供有前途的模型调优。请参阅模型调优部分。
Level 2:检索增强:检索信息以增强提示
在之前的级别基础上建立,这个阶段涉及通过GenAI模型检索相关信息。这表明了与模型进行更复杂交互以提取特定见解或数据。
此时,注意力转向了使用专有或领域特定数据对GenAI模型进行微调。这可以提高性能,并使模型更加可定制,以满足特定要求。
检索增强生成(RAG)是一个将信息检索系统与LLM结合起来以生成更准确和知情回应的框架。RAG的复杂性可以根据检索和集成机制的复杂程度进行分类。
RAG(检索增强生成):在从内部来源进行初始检索之后,RAG利用类似谷歌外部搜索的能力,例如由Vertex AI基础服务提供的搜索。这涉及查询外部知识库、网络和其他相关来源,以收集可增强生成输出的准确性和上下文的附加信息。内部和外部搜索的结合确保对主题进行全面理解。
值得注意的是,检索增强本身具有几个复杂层次。让我们来探讨一下。
2.1级:简单检索和生成
在这个基本级别上,RAG根据用户的查询从知识库或语料库中检索相关文档或段落。然后,检索到的信息直接传递给LLM,后者使用检索到的内容作为上下文生成响应。这种方法相对简单,但可能并不总是产生最准确或相关的结果,因为它完全依赖于LLM理解和综合检索到的信息的能力。
2.2级:情境检索和生成
这一级别引入了更复杂的检索机制,考虑用户查询的上下文。与仅基于关键词匹配检索文档不同,它可能利用语义搜索或查询扩展等技术来识别更相关的信息。此外,检索到的信息可能会根据相关性或重要性进行过滤或排序,然后传递给LLM。通过提供更专注和上下文相关的信息,这可以提高生成响应的质量。
2.3级:动态检索和生成
这一级别通过在生成过程中动态检索信息将RAG推进一步。LLM可以在需要时逐步请求额外信息以生成更全面和准确的响应,而不是一次性检索所有相关信息。这种方法允许进行更微妙和互动式的对话,在这种对话中,LLM可以积极寻找额外信息以澄清歧义或填补知识空白。
2.4级:多源检索和生成
这一高级别涉及从多个来源(如不同的知识库、数据库或甚至实时数据流)检索信息。此处的挑战在于有效整合来自不同来源的信息,这些信息可能具有不同的格式、结构或可靠性水平。这需要复杂的检索和融合技术,以确保生成的响应连贯、准确且及时更新。
2.5级:知识感知生成,知识图谱增强
在这个最高复杂级别,RAG将知识图谱或其他结构化知识表示整合到LLM对检索到的信息的理解中。这使LLM能够对检索到的知识进行推理,识别概念之间的关系,并生成更为见解深刻和明智的响应。这种方法特别适用于需要深入领域知识或推理能力的复杂任务。
第3级:使用特定领域数据调优模型
本级别包括调优模型的能力,随着成熟度的提高,可以使用参数高效微调、带人类反馈的强化学习(RLHF)、监督微调(SFT)或完全微调(FFT)。了解如何使用 Google Vertex AI 来调整您模型的各种选择。这使模型能够根据特定行业或领域的数据进行训练。每个组织的秘密来源是它们多年来积累的专属数据,通常代表着该垂直领域中的独特价值。
重要的是训练模型或两种模型,这些模型与该特定垂直领域的数据中蕴含的术语、本体实体和通用知识相符,如零售、医疗保健、金融服务等。微调 AI 模型涉及各种复杂程度和应用方法,从简单的上下文调整到高级的强化学习