74、聚类与推荐系统:原理、方法及应用

聚类与推荐系统:原理、方法及应用

1. 聚类方法概述

聚类是一种无监督学习方法,旨在将数据集中的样本划分为不同的组或簇,使得同一簇内的样本具有较高的相似性,而不同簇之间的样本具有较大的差异性。常见的聚类方法包括 K-means 聚类和谱聚类。

1.1 K-means 聚类

K-means 聚类是一种经典的聚类算法,它通过迭代的方式将样本分配到 K 个簇中,使得每个样本到其所属簇的质心的距离之和最小。然而,K-means 聚类隐含地假设每个簇对应于一个球形高斯分布,因此在处理非球形数据时效果可能不佳。

1.2 谱聚类

谱聚类是一种基于图论的聚类方法,它通过计算图的拉普拉斯矩阵的特征向量来进行聚类。谱聚类的基本思想是将数据点看作图中的节点,节点之间的边表示数据点之间的相似性。通过对图的拉普拉斯矩阵进行特征分解,可以得到数据的低维表示,然后使用 K-means 聚类对低维表示进行聚类。

1.2.1 谱聚类算法步骤
  1. 计算图的邻接矩阵 W 和度矩阵 D。
  2. 计算图的拉普拉斯矩阵 L = D - W。
  3. 对拉普拉斯矩阵 L 进行特征分解,得到其特征向量和特征值。
  4. 选择最小的 K 个特征向量,组成矩阵 U。
  5. 对矩阵 U 的每一行进行归一化处理,得到矩阵 T。
  6. 使用 K-means 聚类对矩阵 T 的行进行聚类,得到最终的聚类结果。
1.2.2 谱聚类示例

以图 21.19 为例,展示了 K-means 聚类和谱聚类的效

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值