基于用户行为分析的推荐算法是个性化推荐系统的重要算法,学术界一般将这种类型的算法称为协同过滤算法。顾名思义,系统过滤算法就是指用户齐心协力。通过不断的
和网站互动,使自己的推荐列表能够不断过滤掉自己不感兴趣的东西,从而越来越满足自己的需求。
2.1 用户行为数据
显性反馈行为,隐性反馈行为
正反馈,负反馈
用户行为的表示方式,可能包含6部分:
1,user id 产生用户的唯一标识
2,item id 物品的唯一标识
3,behavior type 行为的种类(购买还是浏览)
4,context 产生行为的上下文,包括时间地点等
5,behavior weight 行为的权重(权重可以看视频的时间长短,打分的分数)
6,behavior content 行为的内容(如果是评论行为,就是评论的文本,如果是打标签行为,就是标签)