用户行为数据

基于用户行为分析的推荐算法是个性化推荐系统的重要算法,学术界一般将这种类型的算法称为协同过滤算法。顾名思义,系统过滤算法就是指用户齐心协力。通过不断的

和网站互动,使自己的推荐列表能够不断过滤掉自己不感兴趣的东西,从而越来越满足自己的需求。

2.1 用户行为数据

显性反馈行为,隐性反馈行为

正反馈,负反馈

用户行为的表示方式,可能包含6部分:

1,user id                          产生用户的唯一标识

2,item id       物品的唯一标识

3,behavior type       行为的种类(购买还是浏览)

4,context      产生行为的上下文,包括时间地点等

5,behavior weight      行为的权重(权重可以看视频的时间长短,打分的分数)

6,behavior content          行为的内容(如果是评论行为,就是评论的文本,如果是打标签行为,就是标签)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值