目录
橙色
KMP
好了,解释清楚这个表是什么之后,我们再来看如何使用这个表来加速字符串的查找,以及这样用的道理是什么。如图 1.12 所示,要在主字符串"ababababca"中查找模式字符串"abababca"。
如果在 j 处字符不匹配,那么由于前边所说的模式字符串 PMT 的性质,主字符串中 i 指针之前的 PMT[j −1] 位就一定与模式字符串的第 0 位至第 PMT[j−1] - 1 位是相同的。这是因为主字符串在 i 位失配,也就意味着主字符串从 i−j 到 i-1 这一段是与模式字符串的 0 到 j-1 这一段是完全相同的。
而我们上面也解释了,模式字符串从 0 到 j−1 ,在这个例子中就是”ababab”,其前缀集合与后缀集合的交集的最长元素为”abab”, 长度为4。所以就可以断言,主字符串中i指针之前的 4 位一定与模式字符串的第0位至第 3 位是相同的,即长度为 4 的(主字符串的)后缀与(模式字符串的)前缀相同。这样一来,我们就可以将这些字符段的比较省略掉。具体的做法是,保持i指针不动,然后将j指针指向模式字符串的PMT[j −1]位即可。简言之,以图中的例子来说,在 i 处失配,那么主字符串和模式字符串的前边6位就是相同的。又因为模式字符串的前6位,它的前4位前缀和后4位后缀是相同的,所以我们推知主字符串i之前的4位和模式字符串开头的4位是相同的。就是图中的灰色部分。那这部分就不用再比较了。
其实,求next数组的过程完全可以看成字符串匹配的过程,即以模式字符串为主字符串,以模式字符串的前缀为目标字符串,一旦字符串匹配成功,那么当前的next值就是匹配成功的字符串的长度。具体来说,就是从模式字符串的第一位(注意,不包括第0位)开始对自身进行匹配运算。 在任一位置,能匹配的最长长度就是当前位置的next值。如下图所示。(aa为字符串,i指向了其后缀,而j指向了其前缀)
因为p[i]!=p[j],仍旧不匹配,而且j =0,所以继续这个过程直接让next[i] =0,i指针后移
此时p[i]=p[j],所以i和j同时右移
最后可得
Next算法中while (i < strlen( p ))这个会导致next越界,应改为while (i < strlen( p )-1);
KMP算法中while (i < strlen(t) && j < strlen( p)),其中的strlen()函数的返回值类型是unsigned int,而j的类型是int,两者比较过程中,int类型会转化为unsigned int类型,所以当j的值为-1时,会有 j > strlen( p),意外跳出循环,应该为while (i < strlen(t) && j < (int)strlen( p))。
void getnext(const string& s,int* next){
int j=0;
next[0]=0;
for(int i=1;i<s.size();i++){
while(j>0&&s[j]!=s[i]){
j=next[j-1];
}
if(s[j]==s[i]){
j++;
}
next[i]=j;
}
}
int kmp(const string& haystack,const string& needle,int* next){
int j=0;
for(int i=0;i<haystack.size();i++){
while(j>0&&haystack[i]!=needle[j]){
j=next[j-1];
}
if(haystack[i]==needle[j]){
j++;
}
if(j==needle.size()){
return i-needle.size()+1;
}
}
return -1;
}
参考文章:如何更好地理解和掌握 KMP 算法?