CSP_20131203最大的矩形题解

该博客主要介绍了一个使用C++解决的编程问题,涉及动态规划和二维数组。题目要求在给定的一维高度数组中,找出由连续元素构成的矩形区域,使得该矩形区域内的最小高度乘以矩形的宽(即元素个数)得到的最大值。博主通过暴力枚举所有可能的矩形边界,计算每个矩形的最小高度及其面积,并用动态规划优化了时间复杂度,最终找到了最大面积并输出。
摘要由CSDN通过智能技术生成

题目描述:

 

 时间限制:1s

思路:

数据量1000,枚举所有i到j的矩形的话,1,2,3,4……n   O(n2) 同时要找到i到j最小的高度,时间复杂度最坏n3但是到不了,暴力枚举可以通过。相对简单,代码如下:

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=1010;
const int H=10010;
int n,h[N],mmax=0;
int f[N][N];
int getmin(int a,int b)
{
	int res=0x3f3f3f3f;
	for(int i=a;i<=b;i++)
		res=min(res,h[i]);
	
	return res;
}
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++) cin>>h[i];
	memset(f,0x3f,sizeof(int)*N*N);
	for(int i=1;i<=n;i++)  //暴力枚举所有情况 
		for(int j=i;j<=n;j++)
		{
			f[i][j]=getmin(i,j);  //i到j的最小高度 
			mmax=max(mmax,f[i][j]*(j-i+1)); //计算当前情况的矩阵面积并与最大面积进行比较,更新最大值 
		}
	cout<<mmax<<endl; //输出最大值 
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值