AVL树: AVL树又称为高度平衡的二叉搜索树,是1962年有俄罗斯的数学家G.M.Adel'son-Vel'skii和E.M.Landis提出来的。它能保持二叉树的高度 平衡,尽量降低二叉树的高度,减少树的平均搜索长度。
性质:1. 左子树和右子树的高度之差的绝对值不超过1
2. 树中的每个左子树和右子树都是AVL树
3. 每个节点都有一个平衡因子,任一节点的平衡因子是-1,0,1。(每个节点的平衡因子等于右子树的高度减去左子树的高度 )
4.插入,查找,删除的实现复杂度都是log2N.
一般AVL树的插入是通过不断地调整来使AVL树的平衡因子为-1/0/1,使树保持平衡。
调整有以下几种情况:
1.进行左单旋转
2.进行右单旋转
3.进行先左后右双旋转
4.进行先右后左双旋转
实现代码如下:
#include<iostream>
using namespace std;
template<class K, class V>
struct AVLTreeNode
{
K _key;
V _value;
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
int _bf;
AVLTreeNode(const K& key, const V& value)
:_key(key)
, _value(value)
, _left(NULL)
, _right(NULL)
, _parent(NULL)
, _bf(0)
{}
};
template < class K, class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;
public:
AVLTree()
:_root(NULL)
{}
~AVLTree()
{
_destroy(_root);
}
public:
bool Insert(const K& key, const V& value)
{
if (_root == NULL)
{
_root = new Node(key, value);
}
Node *parent = NULL;
Node *cur = _root;
while (cur)
{
if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;
}
}
cur =new Node(key, value);
if (parent->_key > key)
{
parent->_left = cur;
cur->_parent = parent;
}
else
{
parent->_right = cur;
cur->_parent = parent;
}
bool IsRotate = false;
while (parent)
{
if (parent->_left == cur)
{
parent->_bf--;
}
else
{
parent->_bf++;
}
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = cur->_parent;
}
else
{
IsRotate = true;
if (parent->_bf == 2)
{
if (cur->_bf == 1)
{
//left
_RotateL(parent);
}
else
{
//right left
_RotateRL(parent);
}
}
else if (parent->_bf == -2)
{
if (cur->_bf == -1)
{
//right
_RotateR(parent);
}
else
{
//left right
_RotateLR(parent);
}
}
break;
}
}
if (IsRotate)
{
Node *ppNode = parent->_parent;
if (ppNode == NULL)
{
_root = parent;
}
else
{
if (ppNode->_key < parent->_key)
{
ppNode->_right = parent;
}
else
{
ppNode->_left = parent;
}
}
}
return true;
}
bool IsBalanceTree()
{
return _IsBalance(_root);
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
protected:
bool _IsBalance(Node* root)
{
if (root == NULL)
{
return true;
}
int lefth = _Height(root->_left);
int righth = _Height(root->_right);
int bf = abs(righth - lefth);
if (bf > 1)
{
return false;
}
if (bf != abs(root->_bf))
{
cout << root->_key << " ";
return false;
}
return _IsBalance(root->_left) && _IsBalance(root->_right);
}
int _Height(Node *root)
{
if (root == NULL)
{
return 0;
}
int lefth = _Height(root->_left);
int righth = _Height(root->_right);
return lefth > righth ? lefth + 1 : righth + 1;
}
void _RotateL(Node*& parent)
{
Node *subR = parent->_right;
Node *subRL = subR->_left;
parent->_right = subRL;
if (subRL != NULL)
{
subRL->_parent = parent;
}
subR->_left = parent;
subR->_parent = parent->_parent;
parent->_parent = subR;
parent->_bf = subR->_bf = 0;
parent = subR;
}
void _RotateR(Node*& parent)
{
Node *subL = parent->_left;
Node *subLR = subL->_right;
parent->_left = subLR;
if (subLR != NULL)
{
subLR->_parent = parent;
}
subL->_right = parent;
subL->_parent = parent->_parent;
parent->_parent = subL;
parent->_bf = subL->_bf = 0;
parent = subL;
}
//void _RotateRL(Node*& parent)
//{
// _RotateR(parent->_right);
// _RotateL(parent);
//}
//void _RotateLR(Node*& parent)
//{
// _RotateL(parent->_left);
// _RotateR(parent);
//}
void _RotateRL(Node*& parent)
{
Node *subR = parent->_right;
Node *subRL = subR->_left;
subR->_left = subRL->_right;
if (subRL->_right != NULL)
{
subRL->_right->_parent = subR;
}
subRL->_right = subR;
subR->_parent = subRL;
if (subRL->_bf == 0 || subRL->_bf == 1)
{
subR->_bf = 0;
}
else
{
subR->_bf = 1;
}
parent->_right = subRL->_left;
if (subRL->_left != NULL)
{
subRL->_left->_parent = parent;
}
subRL->_left = parent;
subRL->_parent = parent->_parent;
parent->_parent = subRL;
if (subRL->_bf == 0 || subRL->_bf == -1)
{
parent->_bf = 0;
}
else
{
parent->_bf = -1;
}
parent = subRL;
subRL->_bf = 0;
}
void _RotateLR(Node*& parent)
{
Node *subL = parent->_left;
Node *subLR = subL->_right;
subL->_right = subLR->_left;
if (subLR->_left != NULL)
{
subLR->_left->_parent = subL;
}
subLR->_left = subL;
subL->_parent = subLR;
if (subLR->_bf == 0 || subLR->_bf == -1)
{
subL->_bf = 0;
}
else
{
subL->_bf = -1;
}
parent->_left = subLR->_right;
if (subLR->_right != NULL)
{
subLR->_right->_parent = parent;
}
subLR->_right = parent;
subLR->_parent = parent->_parent;
parent->_parent = subLR;
if (subLR->_bf == 0 || subLR->_bf == 1)
{
parent->_bf = 0;
}
else
{
parent->_bf = 1;
}
parent = subLR;
subLR->_bf = 0;
}
void _InOrder(Node *root)
{
if (root == NULL)
{
return;
}
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
void _destroy(Node* root)
{
if (root)
{
_destroy(root->_left);
_destroy(root->_right);
delete root;
root = NULL;
}
}
private:
Node* _root;
};
int main()
{
AVLTree<int, int> at;
int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15};
for (int i = 0; i < sizeof(a)/sizeof(a[0]); i++)
{
at.Insert(a[i], a[i]);
}
at.InOrder();
at.IsBalanceTree();
return 0;
}