题目:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
方法一:从头到尾遍历数组,就可以找到,时间复杂度为O(n)。
实现代码:
int minNumberInRotateArray(vector<int> rotateArray) {
int i = 0;
int min = rotateArray[0];
while(i < rotateArray.size())
{
if(rotateArray[i] < min)
{
min = rotateArray[i];
}
i++;
}
return min;
}
方法二:旋转之后的数组实际上可以划分成两个有序的子数组,最小的元素就是两个子数组的分界线。这个题目给出的数组一定程度上是排序的,因此我们试着用二分查找法寻找这个最小的元素。
1).用两个指针left,right分别指向数组的第一个元素和最后一个元素。按照题目的旋转的规则,第一个元素应该是大于或等于最后一个元素的。
2).找到数组的中间元素。如果中间元素大于第一个指针指向的元素,则中间元素位于前面的递增子数组,此时最小元素位于中间元素的后面。我们可以让第一个指针left指向中间元素。移动之后,第一个指针仍然位于前面的递增数组中。
如果中间元素小于第二个指针指向的元素,则中间元素位于后面的递增子数组,此时最小元素位于中间元素的前面。我们可以让第二个指针right指向中间元素。移动之后,第二个指针仍然位于后面的递增数组中。这样可以缩小寻找的范围。
3).按照以上思路,第一个指针left总是指向前面递增数组的元素,第二个指针right总是指向后面递增的数组元素。
最终第一个指针将指向前面数组的最后一个元素,第二个指针指向后面数组中的第一个元素。也就是说他们将指向两个相邻的元素,而第二个指针指向的刚好是最小的元素,这就是循环的结束条件。
到目前为止以上思路只是解决了没有重复数字的情况,当有了重复数字时,这道题多了些特殊情况:
例如:{1,0,1,1,1} 和 {1,1,1,0,1} 都可以看成是递增排序数组{0,1,1,1,1}的旋转。这种情况下我们无法继续用上面的解法去解决这道题。因为在这两个数组中,第一个数字,最后一个数字,中间数字都是1。
第一种情况下,中间数字位于后面的子数组,第二种情况,中间数字位于前面的子数组。
因此当两个指针指向的数字和中间数字相同的时候,我们无法确定中间数字1是属于前面的子数组还是属于后面的子数组,也就无法移动指针来缩小查找的范围,就不得不用顺序查找的方法。
实现代码:
int MinInOrder(vector<int> rotateArray, int left, int right)
{
int min = rotateArray[left];
for(int i = left + 1; i < right; ++i)
{
if(rotateArray[i] < min)
{
min = rotateArray[i];
}
}
return min;
}
int minNumberInRotateArray(vector<int> rotateArray)
{
if(rotateArray.size() == 0)
{
return 0;
}
int left = 0;
int right = rotateArray.size() - 1;
int mid = 0;
while(rotateArray[left] >= rotateArray[right])
{
if(left + 1 == right)
{
mid = right;
break;
}
mid = (left+right)/2;
if(rotateArray[left] == rotateArray[right] && rotateArray[mid] == rotateArray[left])
{
return MinInOrder(rotateArray, left, right);
}
if(rotateArray[mid] >= rotateArray[left])
{
left = mid;
}
else if(rotateArray[mid] <= rotateArray[right])
{
right = mid;
}
}
return rotateArray[mid];
}