这个题是简单题。代码就要多写多看。别无他法,就这样,累了,上题。
题目:
112. 路径总和
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。
说明: 叶子节点是指没有子节点的节点。
示例:
给定如下二叉树,以及目标和 sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。
这个题可以BFS,也可以DFS,都算好写吧。
累了,上代码。
BFS:
class Solution:
def hasPathSum(self, root: TreeNode, sum: int) -> bool:
# bfs
if not root: return False
queue_val = [root.val]
queue_node = [root]
while queue_val:
val = queue_val.pop(0)
node = queue_node.pop(0)
if not node.left and not node.right:
if val == sum:
return True
continue
if node.left:
queue_node.append(node.left)
queue_val.append(node.left.val+val)
if node.right:
queue_node.append(node.right)
queue_val.append(node.right.val+val)
return False
BFS复杂度分析
时间复杂度:O(N)O(N),其中 NN 是树的节点数。对每个节点访问一次。
空间复杂度:O(N)O(N),其中 NN 是树的节点数。空间复杂度主要取决于队列的开销,队列中的元素个数不会超过树的节点数。
DFS:
class Solution:
def hasPathSum(self, root: TreeNode, sum: int) -> bool:
#dfs
if not root: return False
self.num = 0
def dfs(root):
if not root:
return False
if not root.left and not root.right:
if self.num+root.val == sum:
return True
return False
self.num += root.val
if dfs(root.left):
return True
if dfs(root.right):
return True
self.num -= root.val
return False
return dfs(root)
DFS复杂度分析
时间复杂度:O(N)O(N),其中 NN 是树的节点数。对每个节点访问一次。
空间复杂度:O(H)O(H),其中 HH 是树的高度。空间复杂度主要取决于递归时栈空间的开销,最坏情况下,树呈现链状,空间复杂度为 O(N)O(N)。
平均情况下树的高度与节点数的对数正相关,空间复杂度为 O(\log N)O(logN)。