Windows10下bazel编译tensorflow的graph_transforms源码用于.pb模型压缩,过程之艰辛让你不敢置信

这篇博客详述了手动编译TensorFlow 3.7.2版本的过程,包括安装bazel、MSYS2、CUDA和cuDNN,以及配置环境和编译选项。作者特别提醒注意CUDA和cuDNN版本的选择,以及在编译过程中可能遇到的错误,如'spawn_strategy'问题,并给出了解决方案。整个编译过程耗时较长,建议在电脑空闲时进行。
摘要由CSDN通过智能技术生成

1、安装bazel 3.7.2版本

以下是我完整的编译过程,记录下来各位少踩点坑

1、安装bazel=3.7.2 从官网下载https://github.com/bazelbuild/bazel/tags,版本可以选择,直接下载.exe,并把路径配置到环境变量中,可以使用bazel --version查看版本,前期先确保电脑已安装JDK 8和Microsort Visual C++ Redistributable for Visual Studio 2015

2、安装MSYS2,从http://www.msys2.org/下载安装,如果慢可以使用镜像源网站下载,一路默认安装即可,最后会打开命令行输入:pacman -Syuu(更新包),等待完成配置环境变量即可

3、查看自己电脑的硬件cuda版本,从官网下载安装CUDA 11.1和cuDNN 8.2

4、git clone https://github.com/tensorflow/tensorflow

5、进入源码根目录

6、执行python ./configure.py配置自己的电脑情况

7、下面每一步的询问根据自己电脑的情况仔细回答:

(pytorch) D:\pycharm\homework\icc\tensorflow>python ./configure.py
You have bazel 3.7.2 installed.
Please specify the location of python. [Default is C:\Users\miao\Anaconda3\envs\pytorch\python.exe]:


Found possible Python library paths:
  C:\Users\miao\Anaconda3\envs\pytorch\lib\site-packages
Please input the desired Python library path to use.  Default is [C:\Users\miao\Anaconda3\envs\pytorch\lib\site-packages]

Do you wish to build TensorFlow with ROCm support? [y/N]: n
No ROCm support will be enabled for TensorFlow.

Do you wish to build TensorFlow with CUDA support? [y/N]: y
CUDA support will be enabled for TensorFlow.

Could not find any cuda.h matching version '' in any subdirectory:
        ''
        'include'
        'include/cuda'
        'include/*-linux-gnu'
        'extras/CUPTI/include'
        'include/cuda/CUPTI'
        'local/cuda/extras/CUPTI/include'
of:


Asking for detailed CUDA configuration...

Please specify the CUDA SDK version you want to use. [Leave em
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值