第一周计划

共5周:

加油!!!!!

819-823日的工作:

1. 再全面的复习一遍ML中的算法,主要为线性回归、逻辑回归、朴素贝叶斯、k均值、支持向量机、Adaboosting、决策树(ID3CART)、EM算法、Apriori算法、PCASVDLDA分类算法、K邻近算法,共12个算法。

需要详细推导的算法或者是掌握原理的关键点为:

1) 信息熵,信息增益

2) 贝叶斯理论,朴素贝叶斯的假设,连乘的下溢的解决方案。

3) Logisticcost Function的推导,极大似然估计。 梯度下降、上升算法,以及Logistic regression中的参数的更新。如果使用正则来避免overfitting

4) 函数间隔,几何间隔,最大间隔分类器的推导过程。拉格朗日对偶,kernel。以及SMO的详细过程

5) Adaboosting中的分类器权重,分类错误率,数据集中数据的权重

6) 线性回归的cost Function的推导,以及最小二乘法的推导。梯度下降法更新系数,正则项避免过拟合。

7) CART中模型误差函数,以及overfitting时候的剪枝策略。

8) 距离度量

9) Apriori 中支持度,可信度定义,频繁项集的寻找,如何从频繁项集中找关联规则。Apriori原理。

10) PCA降维技术中的Sigma的推导。

11) 什么是协同过滤,SVD分解

2. 复习常用的算法和数据结构(需要复习4-5种算法):

1) 概率问题 eg. 蓄水池问题、random生成问题

2) 动态规划问题 eg. 电梯调度、子数组最大和问题(各种变异,二维,首尾相连)、LIS(传统算法与二分加速)、背包问题(01背包,完全背包,混合背包,数组分割、LCS问题(字符串相似度,LCS(子串和子字符串))

3) DFSBFS问题 eg (电话号码对应的单词,二叉树节点的最大距离,重建二叉树,二叉树的各种遍历,深刻理解剪枝和退出条件,sudo问题)

4) 各种基础的算法(itoa atoi 快拍 堆排序,冒泡 ,希尔 ,kmp, strstrbinary search and so on )

5) 有时间在看一下分治算法。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值