目标检测
澎湃de家夥
这个作者很懒,什么都没留下…
展开
-
目标检测学习之路——YOLOv3
相比于YOLOv2,YOLOv3主要做了如下改进:1、提出了新的特征提取器模型Darknet53,该模型相比于Darknet19采用了残差单元(类似ResNet),因此网络模型可以更深;2、采用FPN(feature pyramid networks)结构来实现多尺度预测;3、分类器的改变,使用多个多个 logistic分类器替代原始的Softmax分类器。 1、Darknet53 Da...原创 2020-02-20 18:40:55 · 711 阅读 · 0 评论 -
目标检测学习之路——YOLOv2
YOLOv2 YOLOv2相对于V1的改进主要有两方面:1、使用一系列策略对YOLOv1的网络结构进行了修改,在保证检测速度的同时提升了模型的检测准确率;2、提出了一种联合训练策略,使用ImageNet与COCO联合训练得到YOLO9000模型,可以实现9000类物体的目标检测。本文将从这两个改进策略对YOL...原创 2020-02-06 22:03:22 · 801 阅读 · 0 评论 -
目标检测学习之路——YOLOv1
YOLOV1 因一些需要,对经典的检测模型YOLOV1进行了学习,以下是自己对YOLOV1的一些见解,如有错误,还请大佬指正。 对于目标检测任务,江湖上主要有两大流派:1.two stage策略(即proposal+classifier的方法),经典模型有rcnn、fast-rcnn、fa...原创 2019-11-30 11:05:12 · 766 阅读 · 0 评论