- 博客(4)
- 收藏
- 关注
原创 C++ OpenCVCuda 图像处理-高斯滤波
高斯分布(正态分布)的概率密度集中在均值附近,其能量(即对滤波的贡献)主要分布在 [−3σ,+3σ] 范围内(约占总能量的 99.7%)。)需要至少覆盖 [−3σ,+3σ] 范围,才能避免因核太小而 “截断” 高斯分布的有效部分(否则会导致滤波效果偏离理想的高斯模糊)。让小核(如 3×3 核)的滤波效果更符合实际需求,同时保证不同尺寸核的效果过渡自然。越大(符合高斯核的特性:核越大,模糊程度越高,对应标准差越大,核大小需设置为奇数)与核的最小边长相关,核越大,默认。,本质是让:核的半宽≈3σ。
2025-08-08 15:33:05
246
原创 C++ OpenCVCuda 图像处理-ROI
本文对比了10种在VS2019+OpenCV4.10.0+CUDA12.8环境下对图像进行ROI截取的方法,测试结果表明,对于轻量级ROI操作,传统CPU方法(memcpy、clone、copyTo)因避免线程管理和设备通信开销而更具优势
2025-08-01 16:11:38
748
原创 C++ OpenCVCuda 图像处理-灰度化
本文介绍了两种基于CUDA的图像灰度化方法:OpenCV内置CUDA函数和自定义CUDA核函数。通过VS2019环境测试,发现首次调用CUDA函数会有初始化开销(10-30ms),后续调用则大幅降低(约1ms)。自定义CUDA核函数通过16x16线程块优化,在特定场景下比OpenCV实现更高效(测试显示0.5ms vs 1ms),但OpenCV方案具备更好的通用性和鲁棒性。
2025-07-31 17:28:41
219
原创 Windows11(RTX5060显卡)+VS2019+Opencv4.10.0+CUDA12.8+Cmake3.17.0 环境编译与配置
本文详细介绍了在使用最新的Windows11和RTX5060显卡条件下如何编译并搭建Opencv(有CUDA加速版本)环境并配合VS2019进行开发测试,包括配置环境过程中遇到的一些问题
2025-07-11 17:04:48
1699
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人