06_Machine Vision_图像分割

图像分割 Segmentation

图像分割是将图像划分成多个有意义的区域,当已经成功提取出感兴趣的对象时,分割过程就应该停止。

传统的图像分割算法主要基于像素的相似性(阈值定义相似区域)和不连续性(像素突变)来划分。

基于阈值的分割可表示为:
g ( x , y ) = { 1 , if  f ( x , y ) > T 0 , if  f ( x , y ) ≤ T g(x,y) = \begin{cases} 1, & \text{if } f(x,y) > T \\ 0, & \text{if } f(x,y) \leq T \end{cases} g(x,y)={1,0,if f(x,y)>Tif f(x,y)T

( T ) 作为门槛值,可表示为:

T = T [ x , y , p ( x , y ) , f ( x , y ) ] T = T[x,y,p(x,y),f(x,y)] T=T[x,y,p(x,y),f(x,y)]
其中 ( T ) 可选择为:

  • 全局阈值
    基于全图的灰度值决定,适用于光照均匀的图像,比如黑白文本识别
  • 局部阈值
    依赖于像素点和邻域点的灰度值,适用于光照不均匀的图像
  • 自适应阈值
    每个区域岁为止变化值不一样,适用于复杂的图像

启发式确定全局阈值:

  • 选择一个初始估计值 𝑇
  • 使用 𝑇 对图像进行分割,这将产生两个像素组:
    • G 1 G_1 G1:所有灰度值 > T T T 的像素
    • G 2 G_2 G2:所有灰度值 ≤ T T T 的像素
  • 计算这两个区域的像素的平均灰度值 μ 1 \mu_1 μ1 μ 2 \mu_2 μ2
  • 计算新的阈值,公式如下:
    T = 0.5 × ( μ 1 + μ 2 ) T = 0.5 \times (\mu_1 + \mu_2) T=0.5×(μ1+μ2)
  • 重复步骤 2 到 4,直到连续迭代中的阈值 T T T 小于与设定参数

    自适应局部阈值
  • 将原始图像划分为小区域
    • 初步分割后,可以通过直方图分析确定那个区域错误分割后,进一步分割
  • 对不同的子区域选择不同的阈值进行分割

不连续性检测

最简单的方式是用一个卷积滤波器来检测图像中的不连续性。设计不同的滤波器。

三种不连续检测的方法:

  • 点检测
    [ − 1 − 1 − 1 − 1 8 − 1 − 1 − 1 − 1 ] \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} 111181111

    R = ∑ i = 1 9 w i z i R = \sum_{i=1}^{9} w_i z_i R=i=19wizi

    可识别出孤立的中心点。

  • 线检测

    • Horizontal Edge Detection Kernel
      [ − 1 − 1 − 1 2 2 2 − 1 − 1 − 1 ] \begin{bmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix} 121121121

    • +45° Edge Detection Kernel
      [ − 1 − 1 2 − 1 2 − 1 2 − 1 − 1 ] \begin{bmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{bmatrix} 112121211

    • Vertical Edge Detection Kernel
      [ − 1 2 − 1 − 1 2 − 1 − 1 2 − 1 ] \begin{bmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{bmatrix} 111222111

    • -45° Edge Detection Kernel
      [ 2 − 1 − 1 − 1 2 − 1 − 1 − 1 2 ] \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} 211121112

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值