1.十进制转N进制
1.1 十进制转二进制
1.1.2 十进制整数转二进制
十进制整数转换成二进制采用“除2倒取余”,十进制小数转换成二进制小数采用“乘2取整”。
例题: 135D = ______ B
**解析:**如下图所示,将135除以2,得余数,直到不能整除,然后再将余数从下至上倒取。得到结果:1000 0111B.
1.1.3 十进制小数转二进制
十进制小数转换成二进制小数采用 “乘2取整,顺序排列” 法。
具体做法是:
用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数 部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。
然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
例题: 0.68D = ______ B(精确到小数点后5位)
**解析:**如下图所示,0.68乘以2,取整,然后再将小数乘以2,取整,直到达到题目要求精度。得到结果:0.10101B
1.2 十进制转8进制
思路和十进制转二进制一样,参考如下例题:
例题: 10.68D = ______ Q(精确到小数点后3位)
解析:如下图所示,整数部分除以8取余数,直到无法整除。小数部分0.68乘以8,取整,然后再将小数乘以8,取整,直到达到题目要求精度。得到结果:12.534Q.
1.3 十进制转十六进制
思路和十进制转二进制一样,参考如下例题:
例题: 25.68D = ______ H(精确到小数点后3位)
解析:如下图所示,整数部分除以16取余数,直到无法整除。小数部分0.68乘以16,取整,然后再将小数乘以16,取整,直到达到题目要求精度。得到结果:19.ae1H.
2. N进制转十进制
2.1 二进制转十进制
- 含有小数则往右开始按权相加
方法为:把二进制数按权展开、相加即得十进制数。(具体用法如下图)
例题: 1001 0110B = ______ D
解析: 如下图所示。得到结果:150D.
2.2 八进制转十进制
八进制转十进制的方法和二进制转十进制一样。
例题: 26Q = ______ D
解析:如下图所示。得到结果:22D.
2.3 十六进制转十进制
例题: 23daH = ______ D
解析:如下图所示。得到结果:9178D.
3.二进制转八进制
二进制转换成八进制的方法是,取三合一法,即从二进制的小数点为分界点,向左(或向右)每三位取成一位。不足位补0
例题: 1010 0100B = ____Q
**解析:**计算过程如下图所示。得到结果:244Q.
4.二进制转十六进制
二进制转换成八进制的方法是,取四合一法,即从二进制的小数点为分界点,向左(或向右)每四位取成一位。
例题: 1010 0100B = ____H
**解析:**计算过程如下图所示。得到结果:a4H.
16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15
小结:
1. 十进制转其他进制: 除进制取余数,整数按倒序小数按顺序
2. 其他进制转十进制:每个数字乘于进制的按权并相加
3. 二进制转8进制:小数点往左取三位转十进制,(小数点往右)
4. 二进制转16位进制:小数点往左取四位转十进制,(小数点往右)
5. 8进制转二进制:反过来啦,方法就是一分三,即一个八进制数分成三个二进制数,用三位二进制按权相加,最后得到二进制,小数点依旧就可以