pytorch实现文本分类/生成和数据预测的代码拆解——前言

本文探讨深度学习中数据与算法的重要性,指出数据是训练结果上限,算法是下限。尽管数据有噪点、多样性和成本问题,但其质量对结果至关重要。文章将通过PyTorch,分数据处理、算法选择和训练三步来讲解如何进行文本分类和预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在讲深度学习之前,我想问一个问题。对于深度学习来说,是数据重要还是算法重要?

很多学数学的人给出的答案是,算法重要。但是很多真正做工程的人给出的答案却不同——数据更重要。数据决定了训练结果的上限,算法决定了训练结果的下限。

那为什么我们相对于数据来说,更关注算法呢?因为关注数据有几个缺点:

  1. 数据必然是有噪点的。噪点越多,训练的结果也就越差。
  2. 数据是有多样性的,不可能规定数据的类型。
  3. 好的数据的成本太高了。
  4. 提高数据质量的难度远远高于提高算法的难度。

换句话说,我们没办法提高数据的质量,就只能提高算法的质量。但是在整个的训练过程中,数据的质量是重中之重,直接影响了最后的训练结果。

那么应该如何通过pytorch做训练呢?我们分为三步:

  1. 数据处理
  2. 算法选择(嵌套选择)
  3. 训练
    我们将在后面的文章中,对这三步分别进行代码拆解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值