1. 数据预处理与特征工程
伪代码 - 数据清洗与特征处理
def DataPreprocessing(raw_data):
cleaned_data = RemoveMissingValues(raw_data)
cleaned_data = FilterOutliers(cleaned_data)
normalized_data = MinMaxScaler(cleaned_data)
encoded_data = OneHotEncode(normalized_data)
fusion_data = Concatenate(encoded_data,
ImageFeatures(CT_scans),
TextFeatures(medical_notes))
return fusion_data
数据预处理流程图
2. 大模型构建与训练
伪代码 - 模型训练
def TrainStonePredictionModel(preprocessed_data):
model = TransformerModel(
input_dim=feature_length,
num_layers=12,
heads=8,
dropout=0.3
)
train_loader, val_loader = SplitDataset(preprocessed_data, ratio=0.8)
criterion = CrossEntropyLoss()
optimizer = AdamOptimizer(learning_rate=1e-4)
for epoch in range(100):
for batch in train_loader:
predictions = model.forward(batch)
loss = criterion(predictions, batch.labels)
optimizer.backward(loss)
optimizer.step()
val_loss = ValidateModel(model, val_loader)
SaveCheckpoint(model, val_loss)
return model
模型训练流程图