目录
摘要:本研究旨在探索利用大模型技术对短暂性脑缺血发作(TIA)进行全面预测与精准管理的技术方案。通过整合多源数据,构建大模型实现术前风险评估、术中决策支持、术后并发症预测等功能,并据此制定个性化的手术方案、麻醉方案及术后护理计划。经过严格的技术验证与实验验证,该方案有望提高 TIA 诊疗的精准性和安全性,为患者提供更优质的医疗服务。
一、引言
(一)研究背景
短暂性脑缺血发作(TIA)是神经内科常见的急性脑血管病,具有发病急、症状短暂但易复发等特点,且是脑梗死的重要危险信号。准确预测 TIA 的发生、发展及预后对于及时干预、降低脑梗死风险至关重要。随着人工智能技术的发展,大模型在医疗领域的应用显示出巨大潜力,为 TIA 的精准预测与管理提供了新的途径。
(二)研究目的
开发一套基于大模型的 TIA 技术预测方案,涵盖术前、术中、术后全流程,以及并发症风险预测、手术与麻醉方案制定、术后护理、统计分析、技术验证、实验验证和健康教育指导等方面,以提高 TIA 诊疗水平,改善患者预后。
二、文献综述
(一)TIA 的临床特点与流行病学
回顾 TIA 的定义、诊断标准、常见症状及体征,分析其发病率、患病率、复发率等流行病学数据,强调早期干预的必要性。
(二)传统 TIA 预测与诊疗方法的局限性
探讨目前临床常用的 TIA 预测指标(如 ABCD2 评分等)及诊疗手段在准确性、及时性和个体化方面的不足,为引入大模型技术做铺垫。
(三)大模型在医疗领域的应用现状
综述大模型在疾病诊断、预后预测、医疗影像分析等方面的应用案例,分析其优势与挑战,特别是与脑血管疾病相关的研究成果,为本项目提供技术借鉴。
三、系统设计与方法
(一)数据收集与预处理
- 多源数据采集
- 临床数据:收集 TIA 患者的基本信息(年龄、性别、病史等)、症状表现、体征检查结果、实验室检验数据(血常规、生化指标、凝血功能等)、影像学资料(头颅 CT、MRI 等)。
- 术中数据:记录手术过程中的生命体征监测数据(血压、心率、血氧饱和度等)、手术操作细节(手术时间、麻醉方式、手术入路等)。
- 术后数据:包括术后恢复情况(神经功能恢复、并发症发生情况等)、康复治疗记录、随访数据等。
- 数据清洗与标注
- 对采集的数据进行清洗,处理缺失值、异常值,统一数据格式和单位。
- 邀请神经内科专家、神经外科专家、影像科医生等对数据进行标注,明确 TIA 的诊断、分期、并发症类型等关键信息,为模型训练提供准确的标签。