一、引言
(一)研究背景与意义
- 医疗手术领域现状及挑战
- 大模型技术在医疗决策中的潜力
- 本研究对手术精准化与安全提升的重要性
二、术前阶段
(一)患者数据整合与预处理
- 多源数据采集(病史、检查报告、影像等)
- 数据清洗、标准化与特征工程
(二)手术风险预测模型构建 - 基于大模型的并发症风险评估
- 模型训练数据与标注
- 风险因素分析与权重确定
- 预测结果可视化与可解释性
- 手术难度与可行性预测
- 结合影像数据的疾病分级判断
- 手术操作复杂度评估指标
(三)个性化手术方案生成
- 大模型辅助的术式推荐
- 对比不同术式的优势与风险
- 基于患者特征的适配度分析
- 手术规划与模拟
- 三维重建与虚拟手术演练
- 关键步骤与预计时间的预测
三、术中阶段
(一)生命体征实时监测与分析
- 多模态数据接入(生理信号、手术设备数据等)
- 异常情况预警模型
- 出血、低血压等风险的实时预测
- 预警阈值动态调整机制
(二)手术进程智能引导
- 基于大模型的步骤提醒与决策支持
- 关键解剖结构识别与定位
- 突发状况应对策略推荐
- 团队协作优化