基于大模型的ALS预测与手术全流程技术方案


1. 系统架构概述

应用层
计算层
数据层
术前规划界面
术中AR导航
术后监护面板
多模态预处理器
动态预测引擎
决策优化器
基因数据库
影像PACS
术中监测流

2. 术前预测系统

2.1 核心算法

集成学习模型伪代码

class ALS_Predictor:
    def __init__(self):
        self.genetic_model = TransformerEncoder(layers=12)
        self.image_model = 3DResNet50()
        self.fusion_layer = CrossAttention()
        
    def predict(self, data):
        genetic_emb = self.genetic_model(data['gene_seq'])
        image_emb = self.image_model(data['mri_scan'])
        fused_feature = self.fusion_layer(genetic_emb, image_emb)
        return SurvivalAnalysis(fused_feature)

2.2 数据流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LCG元

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值