基于大模型的手术全流程智能决策技术方案

一、术前评估系统

1.1 并发症风险预测模型

伪代码实现

# 数据预处理模块
def preprocess_data(patient_data):
    # 缺失值填充
    patient_data = fill_missing_values(patient_data)
    # 数据标准化
    patient_data = standardize(patient_data)
    # 特征编码(如基因数据)
    patient_data = encode_features(patient_data)
    return patient_data

# 特征工程模块
def extract_features(patient_data):
    # 组合基础特征与高维特征
    basic_features = patient_data.filter(['age', 'gender', 'bmi'])
    high_dim_features = generate_embeddings(patient_data['medical_records'])
    return np.concatenate([basic_features, high_dim_features], axis=1)

# 模型预测模块
def predict_complications(features):
    # 加载预训练模型
    model = load_model('complication_model.pth')
    # 概率预测
    risk_prob = model.predict(features)
    # 风险分级
    risk_level = classify_risk(risk_prob)
    return risk_level, risk_prob

# 主流程
patient_data = load_patient_record()
processed_data = preprocess_data(patient_data)
features = extract_features(processed_data)
risk_level, risk_prob = predict_complications(features)
generate_report(risk_level, risk_prob)

流程图

患者数据输入
数据预处理
特征工程
模型推理
风险分级
生成评估报告

1.2 手术方案推荐系统

伪代码实现

# 动态规划路径搜索
def find_optimal_path(surgical_map, start_node):
    dp_table = initialize_dp_table(surgical_map)
    for step in range(1, max_steps+1):
        for node in surgical_map.nodes:
            dp_table[node] = max(
                get_value(dp_table, neighbor) + edge_weight(neighbor, node) 
                for neighbor in surgical_map.neighbors(node)
            )
    return backtrack_path(dp_table, start_node)

流程图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LCG元

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值