一、术前评估系统
1.1 并发症风险预测模型
伪代码实现:
# 数据预处理模块
def preprocess_data(patient_data):
# 缺失值填充
patient_data = fill_missing_values(patient_data)
# 数据标准化
patient_data = standardize(patient_data)
# 特征编码(如基因数据)
patient_data = encode_features(patient_data)
return patient_data
# 特征工程模块
def extract_features(patient_data):
# 组合基础特征与高维特征
basic_features = patient_data.filter(['age', 'gender', 'bmi'])
high_dim_features = generate_embeddings(patient_data['medical_records'])
return np.concatenate([basic_features, high_dim_features], axis=1)
# 模型预测模块
def predict_complications(features):
# 加载预训练模型
model = load_model('complication_model.pth')
# 概率预测
risk_prob = model.predict(features)
# 风险分级
risk_level = classify_risk(risk_prob)
return risk_level, risk_prob
# 主流程
patient_data = load_patient_record()
processed_data = preprocess_data(patient_data)
features = extract_features(processed_data)
risk_level, risk_prob = predict_complications(features)
generate_report(risk_level, risk_prob)
流程图:
1.2 手术方案推荐系统
伪代码实现:
# 动态规划路径搜索
def find_optimal_path(surgical_map, start_node):
dp_table = initialize_dp_table(surgical_map)
for step in range(1, max_steps+1):
for node in surgical_map.nodes:
dp_table[node] = max(
get_value(dp_table, neighbor) + edge_weight(neighbor, node)
for neighbor in surgical_map.neighbors(node)
)
return backtrack_path(dp_table, start_node)
流程图: