一、核心算法实现伪代码
1. 多模态数据预处理算法
def preprocess_data(ultrasonic_images, clinical_features):
normalized_images = []
for img in ultrasonic_images:
img = resize(img, target_size=(224, 224))
img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
normalized_images.append(img)
normalized_features = (clinical_features - np.mean(clinical_features, axis=0)) / np.std(clinical_features, axis=0)
fused_features = np.concatenate((normalized_images, normalized_features), axis=1)
return fused_features
2. 结节良恶性预测模型
class NoduleClassificationModel(nn.Module):
def __init__(self):
super(NoduleClassificationModel, self).__init__()
self.image_encoder = ImageTransformer(input_channels=3, num_classes=2)
self.clinic_encoder = ClinicalFeatureEncoder(input_dim=10)
self.fusion_layer = nn.Linear(512 + 256, 128)
self.output_layer = nn.Linear(128, 2)
def forward(self, image_data, clinic_data):
img_feat = self.image_encoder(image_data)
clinic_feat = self.clinic_encoder(clinic_data)
fused_feat = torch.cat((img_feat, clinic_feat), dim=1)
x = F.relu(self.fusion_layer(fused_feat))
return self.output_layer(x)
3. 手术风险评估算法
def train_surgery_risk_model(training_data):
training_data['age_tsh_interaction'] = training_data['age'] * training_data['TSH']
params = {
'objective': 'multi:softprob',
'num_class': 5,
'eval_metric': 'mlogloss'
}
model = xgboost.train(params, training_data, num_boost_round=100)
return model
二、系统模块流程图(Mermaid格式)
1. 数据预处理流程