基于大模型的结节性甲状腺肿智能诊疗系统技术方案


一、核心算法实现伪代码

1. 多模态数据预处理算法

# 数据标准化与特征融合伪代码
def preprocess_data(ultrasonic_images, clinical_features):
    # 图像标准化处理
    normalized_images = []
    for img in ultrasonic_images:
        img = resize(img, target_size=(224, 224))  # 统一图像尺寸
        img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 标准化
        normalized_images.append(img)
    
    # 临床特征归一化
    normalized_features = (clinical_features - np.mean(clinical_features, axis=0)) / np.std(clinical_features, axis=0)
    
    # 特征融合
    fused_features = np.concatenate((normalized_images, normalized_features), axis=1)
    return fused_features

2. 结节良恶性预测模型

# 基于Transformer的预测模型伪代码
class NoduleClassificationModel(nn.Module):
    def __init__(self):
        super(NoduleClassificationModel, self).__init__()
        self.image_encoder = ImageTransformer(input_channels=3, num_classes=2)
        self.clinic_encoder = ClinicalFeatureEncoder(input_dim=10)  # 假设10个临床特征
        self.fusion_layer = nn.Linear(512 + 256, 128)  # 特征融合层
        self.output_layer = nn.Linear(128, 2)  # 二分类输出
    
    def forward(self, image_data, clinic_data):
        img_feat = self.image_encoder(image_data)
        clinic_feat = self.clinic_encoder(clinic_data)
        fused_feat = torch.cat((img_feat, clinic_feat), dim=1)
        x = F.relu(self.fusion_layer(fused_feat))
        return self.output_layer(x)

3. 手术风险评估算法

# 基于XGBoost的风险预测模型伪代码
def train_surgery_risk_model(training_data):
    # 特征工程:构造组合特征
    training_data['age_tsh_interaction'] = training_data['age'] * training_data['TSH']
    
    # 定义模型参数
    params = {
   
        'objective': 'multi:softprob',
        'num_class': 5,  # 低/中低/中/中高/高风险五级分类
        'eval_metric': 'mlogloss'
    }
    
    # 训练模型
    model = xgboost.train(params, training_data, num_boost_round=100)
    return model

二、系统模块流程图(Mermaid格式)

1. 数据预处理流程

超声图像
临床数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LCG元

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值