如果看了此文你还不懂傅里叶变换,那就过来掐死我吧【完整版教程】

  作 者:韩 昊 知 乎:Heinrich 微 博:@花生油工人 知乎专栏:与时间无关的故事   谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。   转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更...

2019-01-06 13:04:29

阅读数:11

评论数:0

条件概率/全概率/贝叶斯公式

转:https://blog.csdn.net/qq_31073871/article/details/81077386  参考:https://www.cnblogs.com/ohshit/p/5629581.html 1、条件概率公式         设A,B是两个事件,且P(B)&...

2019-01-01 17:57:53

阅读数:35

评论数:0

卡尔曼滤波器工作原理

转:http://www.cnblogs.com/leexiaoming/p/6852483.html 在SLAM的后端优化中有存在这两大类优化方法:滤波器优化和非线性优化.目前大多数基于视觉的SLAM算法都是采用的非线性优化的相关方法(如应用较多的G2O图优化框架).但是滤波器的方法仍然在某些...

2018-12-31 12:43:27

阅读数:9

评论数:0

两个高斯分布相乘结果是什么?

参考:http://www.tina-vision.net/docs/memos/2003-003.pdf    

2018-12-31 11:16:25

阅读数:27

评论数:0

特征值和特征向量

转:https://blog.csdn.net/fuming2021118535/article/details/51339881  在刚开始学的特征值和特征向量的时候只是知道了定义和式子,并没有理解其内在的含义和应用,这段时间整理了相关的内容,跟大家分享一下; 首先我们先把特征值和特征向量的...

2018-11-23 19:02:37

阅读数:25

评论数:0

协方差意义

转:https://blog.csdn.net/wuhzossibility/article/details/8087863 在概率论中,两个随机变量 X 与 Y 之间相互关系,大致有下列3种情况:   当 X, Y 的联合分布像上图那样时,我们可以看出,大致上有: X 越大  Y 也越...

2018-11-13 21:48:41

阅读数:43

评论数:0

均方根误差(RMSE),平均绝对误差(MAE),标准差(Standard Deviation)的对比

RMSE Root Mean Square Error,均方根误差 是观测值与真值偏差的平方和与观测次数m比值的平方根。 是用来衡量观测值同真值之间的偏差 MAE Mean Absolute Error ,平均绝对误差 是绝对误差的平均值 能更好地反映预测值误差的实际情况. 标准差 ...

2018-09-19 18:15:23

阅读数:464

评论数:0

SVD原理及其应用导论

转:https://blog.csdn.net/ACdreamers/article/details/44656963 发现这个博主的文章质量很高 今天,来学习一种很重要的矩阵分解,叫做奇异值分解(Sigular Value Decomposition),简称SVD。   Contents...

2018-09-13 17:28:25

阅读数:54

评论数:0

牛顿法

牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数f (x)的泰勒级数的前面几项来寻找方程f (x) = 0的根,也可以用于求函数的极小值。牛顿法最大的特点就在于它的收敛速度很快。   具体步骤:   首先,选择一个接近函数 f (x)零点的 x0,计算相应的 f (x0) 和切线...

2018-09-13 15:40:57

阅读数:18

评论数:0

矩阵求导,向量求导

看了很多博客,发现最后都是翻译自维基百科的,给出地址:https://en.wikipedia.org/wiki/Matrix_calculus 这里有个同学翻译了上面的内容,挺好的:https://blog.csdn.net/uncle_gy/article/details/78879131....

2018-09-12 16:16:38

阅读数:30

评论数:0

最优化-牛顿法(Newton)

转:https://blog.csdn.net/qq_36330643/article/details/78003952 平时经常看到牛顿法怎样怎样,一直不得要领,今天下午查了一下维基百科,写写我的认识,很多地方是直观理解,并没有严谨的证明。在我看来,牛顿法至少有两个应用方向,1、求方程的根,2...

2018-09-03 16:01:49

阅读数:584

评论数:0

雅克比矩阵和海森矩阵 Jacobian and Hessian Matrix

转:http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/ 1. Jacobian 在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 还有, 在代数...

2018-09-03 15:08:56

阅读数:82

评论数:0

高斯牛顿(Gauss Newton)、列文伯格-马夸尔特(Levenberg-Marquardt)最优化算法与VSLAM

转:https://blog.csdn.net/zhubaohua_bupt/article/details/74973347 在VSLAM优化部分,我们多次谈到,构建一个关于待优化位姿的误差函数 (直接法:灰度误差  ;特征点法:重投影误差), 当待优化的位姿使这个误差函数最小时(当SLA...

2018-08-28 20:14:19

阅读数:54

评论数:0

矩阵求导

转:https://blog.csdn.net/daaikuaichuan/article/details/80620518 一、矩阵求导   一般来讲,我们约定x=(x1,x2,...xN)Tx=(x1,x2,...xN)T,这是分母布局。常见的矩阵求导方式有:向量对向量求导,标量对向量求导...

2018-08-28 17:44:23

阅读数:22

评论数:0

四元数的运算规则

转载文章地址:http://blog.csdn.net/chenlanjie842179335/article/details/8039031 四元数是由爱尔兰数学家威廉·卢云·哈密顿在1843年发现的数学概念。四元数的乘法不符合交换律。 明确地说,四元数是复数的不可交换延...

2017-04-21 13:04:32

阅读数:4305

评论数:0

四元数的形象理解

引用知乎链接:https://www.zhihu.com/question/23005815 根据我的理解,大多数人用汉密尔顿四元数就只是做三维空间的旋转变换(我反正没见过其他用法)。那么你不用学群论,甚至不用复习线性代数,看我下面的几张图就可以了。 首先,定义一个你需要做的旋...

2017-04-21 13:02:58

阅读数:622

评论数:0

奇异值分解的物理含义

原文地址:http://blog.csdn.net/xiahouzuoxin/article/details/41118351 此文有一半转载自他出,主要在这进行个整理,具体内容文中都有相关的转载链接。 特征值与特征向量的几何意义 矩阵的乘法是什么,别...

2017-04-07 22:21:00

阅读数:430

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭