均方根误差(RMSE),平均绝对误差(MAE),标准差(Standard Deviation)的对比

RMSE Root Mean Square Error,均方根误差 是观测值与真值偏差的平方和与观测次数m比值的平方根。 是用来衡量观测值同真值之间的偏差 MAE Mean Absolute Error ,平均绝对误差 是绝对误差的平均值 能更好地反映预测值误差的实际情况. 标准差 ...

2018-09-19 18:15:23

阅读数:50

评论数:0

SVD原理及其应用导论

转:https://blog.csdn.net/ACdreamers/article/details/44656963 发现这个博主的文章质量很高 今天,来学习一种很重要的矩阵分解,叫做奇异值分解(Sigular Value Decomposition),简称SVD。   Contents...

2018-09-13 17:28:25

阅读数:13

评论数:0

牛顿法

牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数f (x)的泰勒级数的前面几项来寻找方程f (x) = 0的根,也可以用于求函数的极小值。牛顿法最大的特点就在于它的收敛速度很快。   具体步骤:   首先,选择一个接近函数 f (x)零点的 x0,计算相应的 f (x0) 和切线...

2018-09-13 15:40:57

阅读数:10

评论数:0

矩阵求导,向量求导

看了很多博客,发现最后都是翻译自维基百科的,给出地址:https://en.wikipedia.org/wiki/Matrix_calculus 这里有个同学翻译了上面的内容,挺好的:https://blog.csdn.net/uncle_gy/article/details/78879131....

2018-09-12 16:16:38

阅读数:16

评论数:0

最优化-牛顿法(Newton)

转:https://blog.csdn.net/qq_36330643/article/details/78003952 平时经常看到牛顿法怎样怎样,一直不得要领,今天下午查了一下维基百科,写写我的认识,很多地方是直观理解,并没有严谨的证明。在我看来,牛顿法至少有两个应用方向,1、求方程的根,2...

2018-09-03 16:01:49

阅读数:87

评论数:0

雅克比矩阵和海森矩阵 Jacobian and Hessian Matrix

转:http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/ 1. Jacobian 在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 还有, 在代数...

2018-09-03 15:08:56

阅读数:21

评论数:0

高斯牛顿(Gauss Newton)、列文伯格-马夸尔特(Levenberg-Marquardt)最优化算法与VSLAM

转:https://blog.csdn.net/zhubaohua_bupt/article/details/74973347 在VSLAM优化部分,我们多次谈到,构建一个关于待优化位姿的误差函数 (直接法:灰度误差  ;特征点法:重投影误差), 当待优化的位姿使这个误差函数最小时(当SLA...

2018-08-28 20:14:19

阅读数:20

评论数:0

矩阵求导

转:https://blog.csdn.net/daaikuaichuan/article/details/80620518 一、矩阵求导   一般来讲,我们约定x=(x1,x2,...xN)Tx=(x1,x2,...xN)T,这是分母布局。常见的矩阵求导方式有:向量对向量求导,标量对向量求导...

2018-08-28 17:44:23

阅读数:16

评论数:0

四元数的运算规则

转载文章地址:http://blog.csdn.net/chenlanjie842179335/article/details/8039031 四元数是由爱尔兰数学家威廉·卢云·哈密顿在1843年发现的数学概念。四元数的乘法不符合交换律。 明确地说,四元数是复数的不可交换延...

2017-04-21 13:04:32

阅读数:3245

评论数:0

四元数的形象理解

引用知乎链接:https://www.zhihu.com/question/23005815 根据我的理解,大多数人用汉密尔顿四元数就只是做三维空间的旋转变换(我反正没见过其他用法)。那么你不用学群论,甚至不用复习线性代数,看我下面的几张图就可以了。 首先,定义一个你需要做的旋...

2017-04-21 13:02:58

阅读数:442

评论数:0

奇异值分解的物理含义

原文地址:http://blog.csdn.net/xiahouzuoxin/article/details/41118351 此文有一半转载自他出,主要在这进行个整理,具体内容文中都有相关的转载链接。 特征值与特征向量的几何意义 矩阵的乘法是什么,别...

2017-04-07 22:21:00

阅读数:318

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭