Pytorch学习入门指导教程(入门路线图,附推荐工程)

本文提供了一份Pytorch学习路线图,包括官方新手教程的学习、Imagenet分类示例的深入理解、通过研究Mask RCNN论文实践项目以及高级教程的学习,帮助读者快速掌握Pytorch并进行实际项目开发。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch学习入门指导教程(入门路线图,附推荐工程)

接触Pytorch一年有余,从小菜鸟变成了大菜鸟,现总结下经验,供大家提供一份入门路线图。

1)学习官方Beginner Tutorials,有个大概了解(https://pytorch.org/tutorials/index.html);

2)学习Imagenet分类demo逐行深入理解(https://github.com/pytorch/examples/tree/master/imagenet),并考虑做一个适合自己的base script,以后就在上面改就行(例如我的https://github.com/MichaelLiang12/PFNet-FGVC/blob/master/PFNet_train_test.py);

3)对框架已经基本了解,结合自身方向,找一个主流论文(pytorch code released,例如Mask RCNN https://github.com/matterport/Mask_RCNN),一般大家创新的部分是DataLoader

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值