A. 人工智能 --- 算法设计步骤(数据预处理)

本文探讨了在人工智能算法设计中,数据预处理的重要步骤,包括数据扩充、合成数据、迁移学习等技术手段,以及非技术手段如用户交互数据采集。数据预处理涉及数据采样、缺失值处理、特征提取和降维等环节,如PCA、LLE、t-SNE等算法的应用。这些方法旨在优化模型性能,减少过拟合,提升模型泛化能力。
摘要由CSDN通过智能技术生成

A. 算法设计步骤 — 数据预处理

训练数据过少

  • 技术手段
    • 数据扩充
      • 数据增强
        • 有很多方法可以扩充数据。仍然是汽车图像的例子,你可以旋转原始图像,更改光照条件,以不同方式裁剪。因此对于一个图像,你可以生成不同的子样本。 这样,你就可以减少对分类器的过度拟合。
      • 合成数据
      • 通过GMM生成数据
    • 算法
      • 迁移学习
      • 预训练模型
      • 专家系统/知识图谱
  • 非技术手段
    • 通过数据工程的手段,采集用户数据
    • 通过产品,跟用户产生互动,以此产生数据
    • 对于运维,可用通过混沌工程采集数据

数据预处理

  • 数据采样
    • 上采样
    • 下采样
  • 处理缺失值
    • 丢失缺失值(数据量大,缺失值少,比如互联网数据)
    • 遗失值插补
      • 该列的存在值的平均值
  • 去除唯一属性
  • 数据正则化,标准化
  • 数据摘要

特征提取

  • 特征列
    • 数值列
    • 分桶列
    • 分类标识列
    • 分类词汇列
    • 经过哈希处理的列
    • 组合列
    • 指标列和嵌入列
  • 特征提取算法
    • 文本
      • TFIDF
  • 特征选取
    • 步骤
      • 搜索新的特征子集
      • 对搜索结果进行评估
    • 方法
      • 包裹法
      • 过滤法
      • 嵌入法

降维

  • 线性降维
    • PCA: 主成分分析(无监督)
      • 步骤
        • 数据规范化
        • 协方差矩阵计算
        • 特征值分解
        • 降维处理
        • 数据投影
      • 缺点
        • 只能做线性降维,无法做非线性降维
      • 算法
        • NMF(Non-negative matrix factorization)
        • 没有非负限制的降维
    • LDA: 监督算法
      • 结合label,做线性降维。
  • 非线性降维
    • 基于图的降维
      • 拉普拉斯特征映射(LE)
        • 拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近,从而在降维后仍能保持原有的数据结构。
      • 局部线性嵌入(LLE)
        • 概述
          • LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像图像识别,高维数据可视化等领域。
        • 目标
          • 我们有一块卷起来的布,我们希望将其展开到一个二维平面,我们希望展开后的布能够在局部保持布结构的特征,其实也就是将其展开的过程,就想两个人将其拉开一样。
          • 在局部保持布结构的特征,或者说数据特征的方法有很多种,不同的保持方法对应不同的流形算法:比如说
            • 等距映射(ISOMAP)算法在降维后希望保持样本之间的测地距离而不是欧式距离,因为测地距离更能反映样本之间在流形中的真实距离。
              • 问题
                • 等距映射算法有一个问题就是他要找所有样本全局的最优解,当数据量很大,样本维度很高时,计算非常的耗时
              • 解决思路
                • LLE通过放弃所有样本全局最优的降维,只是通过保证局部最优来降维。同时假设样本集在局部是满足线性关系的,进一步减少的降维的计算量。
        • 核心思想
    • t-SNE
      • 问题
        • LE和LLE只能处理相近的点相近,无法处理不同的点也可能相近的情况
      • 两种分布的条件概率尽可能的相近,可以用梯度下降的方法
        • 计算不同的点之间的相似度
        • 计算不同点之间相似度的条件概率
      • 优化
        • 先做 PCA 到一定程度,再做t-SNE
  • 因子分析
  • 独立成分分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值