C. 深度学习 --- 基础组件概述(二)

本文介绍了深度学习中三种重要的技术:Dropout用于缓解过拟合,通过随机删除神经元增强模型泛化能力;池化层主要用于减少参数数量,提高图像识别的平移不变性;残差网络通过残差连接解决深层网络的梯度消失和退化问题,保持网络性能。
摘要由CSDN通过智能技术生成

C. 深度学习 — 基础组件概述(二)

Dropout

  • Dropout简介
    • Dropout出现的原因
      • Dropout可以比较有效的缓解过拟合的发生,在一定程度上达到正则化的效果
    • 什么是Dropout
      • 我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征
  • Dropout工作流程及使用
    • Dropout具体工作流程
      • 首先随机(临时)删掉网络中一半的隐藏神经元,输入输出神经元保持不变
      • 然后把输入x通过修改后的网络前向传播,然后把得到的损失结果通过修改的网络反向传播。一小批训练样本执行完这个过程后,在没有被删除的神经元上按照随机梯度下降法更新对应的参数(w,b)
      • 然后继续重复这一过程:
        • 恢复被删掉的神经元(此时被删除的神经元保持原样,而没有被删除的神经元已经有所更新)
        • 从隐藏层神经元中随机选择一个一半大小的子集临时删除掉(备份被删除神经元的参数)。
        • 对一小批训练样本,先前向传播然后反向传播损失并根据随机梯度下降法更新参数(w,b) (没有被删除的那一部分参数得到更新,删除的神经元参数保持被删除前的结果)。
    • Dropout在神经网络中的使用
      • 取平均的作用
      • 减少神经元之间复杂的共适应关系
      • Dropout类似于性别在生物进化中的角色
  • 为什么说Dropout可以解决过拟合
    • Dropout:train 和 test 用的weight不一样
      • Train
        • 每次train,网络结构不一样
        • performance 会变差
      • Test
        • 不用Dropout
        • Weight = weight * (1 - p)%
      • 线性激活函数,效果会更好一些,比如说:ReLU,Maxout

池化层

  • 目的
    • 出现的原因:图像深度学习中图像尺寸过大,引入池化以减少参数矩阵的尺寸,从而减少最后全连层中的参数数量——根本目的为了防止过拟合
    • 在图像识别领域,池化还能提供平移和旋转不变性。若对某个区域做了池化,即使图像平移/旋转几个像素,得到的输出值也基本一样,因为每次最大值运算得到的结果总是一样的。
    • 常出现的场合:卷积层后一般会跟上一个池化层
    • 实际上是一种降采样的方式
  • 种类
    • 最大池化
    • 平均池化
    • 全局最大池化
    • 全局平均池化
  • 形态
    • 1D 用于一维数据
    • 2D 一般用于二维图像数据
    • 3D 带时间序列数据的图像数据
  • 参数

残差连接

  • 问题
    • 梯度消失问题
      • 我们发现很深的网络层,由于参数初始化一般更靠近0,这样在训练的过程中更新浅层网络的参数时,很容易随着网络的深入而导致梯度消失,浅层的参数无法更新。
    • 网络退化问题
      • 随着网络深度增加,模型会产生退化现象。它不是由过拟合产生的,而是由冗余的网络层学习了不是恒等映射的参数造成的
  • 核心思想
    • ResNet的思想是假设我们涉及一个网络层,存在最优化的网络层次,那么往往我们设计的深层次网络是有很多网络层为冗余层的。那么我们希望这些冗余层能够完成恒等映射,保证经过该恒等层的输入和输出完全相同。具体哪些层是恒等层,这个会有网络训练的时候自己判断出来。
  • 残差网络
    • ResNet的方法是加上所有跳跃连接,每两层增加一个捷径,构成一个残差块。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值