C. 深度学习 --- 基础组件概述(三) --- 编码器

本文深入探讨了自编码器的原理与类型,包括欠完备和过度完备的自编码器,以及稀疏、去噪和变分自编码器等变种。自编码器主要通过无监督预训练和有监督微调进行训练,广泛应用于文本检索、图片相似性搜索和时序数据处理。在语音信息处理中,自编码器能有效分离内容和语者特征。评估编码器性能的关键在于重构质量和二分类模型的准确率。此外,VQ-VAE等模型进一步提升了编码器的可解释性和应用潜力,如在语音辨识中的应用。
摘要由CSDN通过智能技术生成

C. 深度学习 — 基础组件概述(三) — 编码器

概述

  • 概述
    • 其独特之处是输入层和输出层的单元数目相等;
    • 在功能上,自编码器的目的不是根据输入来预测输出,而是重建网络输入
  • 组成结构
    • 编码映射
    • 解码映射
  • 自编码器类型
    • 欠完备(undercomplete)的自编码器
    • 过度完备的自编码器
    • 栈式自编码器
      • 步骤
        • 无监督预训练
        • 有监督微调
    • 稀疏自编码器
    • 去噪编码器
    • 收缩自编码器
    • 变分自编码器

基本模型

  • X数据 -> nn -> hidden layer -> nn -> Y数据hidden layer:就是 code(bottle)其中 X数据 和 Y数据,尽可能的相近

实现方式

  • 文本/图像
    • 算法
      • DNN
        • Pre-training DNN
          • Greedy Layer-wise Pre-training again
        • 优化手段
          • De-noising auto-encoder
          • Contractive auto-encoder
      • CNN
        • Unpooling
        • Deconvolution:实际上就是 Convolution
      • Seq2Seq2Seq auto-encoder
        • document -> seq2seq -> word sequence -> seq2seq -> document
    • 应用场景
      • 文本检索
        • 文本向量:Bag of word
      • 图片相似性搜索
  • 时序数据
    • 算法
      • Skip thought
      • Quick Thought
      • CPC(Contrastive Predictive Coding)
    • 注意
      • 正样本数据
      • 负样本数据,可能需要自己生成
  • 音频:特征分离(Feature Disentangle)
    • 概述
      • 语音信息包括:语音内容、语者特征、环境噪音等
    • 思想
      • 一个Encoder:前100维度,是语者特征,后100维度是语音内容
      • 两个Encoder:一个是语者特征,一个是语音内容
    • 应用场景
      • 变音器
    • 算法
      • Adversarial Training
      • 重新设计网络结构
        • IN:instance normalization(Remove global information)
        • AdaIN:adaptive instance normalization(only influence global information)

如何评估编码器的好坏

  • 步骤
    • 训练一个二分类模型
      • 给定一堆的数据,每一条数据都是一对的,标记这对数据是匹配的还是不匹配
    • 通过这个二分类模型,评估encoder的好坏
      • 输入
        • 图片
        • 通过 encoder 计算出的编码
      • 辨别器
        • 通过编码,decoder的图片
      • 判断输入的图片,以及decode出来的图片,是不是一组的,或者score的分数

编码器的可解释性(离线表示/One-hot/Binary-hot)

  • VQVAE(Vector Quantized Variational Auto-encoder)
    • 步骤
      • Codebook(a set of vectors)Learn from data
      • 通过Encoder获取code,计算跟vector的相似度
      • 获取相似度最好的vector,输入Decoder
  • 应用场景
    • 语音辨识
      • 保留语音内容,过滤掉噪音、语者特征等信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值