个人面经
Easy.miclover
做一个会思考的程序猿
展开
-
面试过程中手撕代码总结
持续更新中。。。。。。 算法题:给定一个长度为N个整数的list,用最少的比较次数,得出list中的最大值和最小值 当我们需要找出一个数列中的最大值或者最小值的时候,至少需要n-1次比较。如果我们同时需要找到最大值和最小值,最常见的做法就是对每个元素,分别和最大值和最小值都比一下,这样每个元素都...原创 2018-09-23 14:05:00 · 3968 阅读 · 0 评论 -
蚂蚁金服面试
1、对于Xgboost模型,如果loss很低,但分类精度很低,原因?如何解决,从模型内部考虑? 2、gbdt,xgboost,lgbm的区别 3、梯度下降法,牛顿法,拟牛顿法区别 5、什么是梯度消失,饱和,如何改善 6、lr的推导 7、bagging.boosting.stacking区别 8、CNN与RNN的区别 9、如何防止过拟合 2018/08/16 百度面试 ...原创 2018-09-21 20:00:39 · 464 阅读 · 1 评论 -
面经2
1、CNN的核心是什么? 局部感知,权值共享,池化和层次化 2、卷积操作是怎样进行的? 对于图像的不同局部的矩阵和卷积矩阵的各个位置的元素相乘,然后相加求和。 3、卷积反向传播过程? 为梯度; 4、Tensorflow中卷积操作是怎样实现的? (w,h,in,ou)四维张量。 5、池化又是怎样操作的,反向传...原创 2018-09-21 20:02:30 · 287 阅读 · 0 评论 -
百度面经
一面 1、项目? 2、集成学习,GBDT,xgboost,lightGBM说一下,有什么区别。 3、编程:二叉树的中序遍历? 4、kmean的优缺点? 二面 1、比赛 2、重点说一下stacking模型 3、深度学习中的优化算法 4、特征选择的方法 5、编程:用二分查找的方法找到一个某一个重复数字的有序数列的开头第一个[1,2,2,2,2]输出第一个2....原创 2018-09-21 20:03:02 · 255 阅读 · 0 评论